Suppr超能文献

甲型流感病毒多株结构的年龄血清流行率曲线。

Age-seroprevalence curves for the multi-strain structure of influenza A virus.

机构信息

Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.

Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

Nat Commun. 2021 Nov 18;12(1):6680. doi: 10.1038/s41467-021-26948-8.

Abstract

The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% - 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens.

摘要

年龄与血清流行率之间的关系可用于估计传染病的年发病率。对于具有多种血清学上明显差异的病原体,需要描述对一组抗原变异的病原体的复合暴露。在这项研究中,我们检测了 2009 年至 2015 年间在越南采集的 24402 份普通人群血清样本,以检测对 11 种人类流感 A 株的抗体。我们报告说,抗体效价数据的主成分分解将第一主成分作为血清流行率的合适替代物;这导致亚型 H3 的年发病率估计为 25.6%(95%CI:24.1%-27.1%),亚型 H1 的年发病率估计为 16.0%(95%CI:14.7%-17.3%)。其余的主成分通过血清学相似性分离菌株,并将出生队列与其特定的流感史联系起来。我们的工作表明,降维可以用于人类抗体谱,为抗原变异的病原体构建年龄-血清流行率关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1222/8602397/571f92b4bf11/41467_2021_26948_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验