Hönl Simon, Popoff Youri, Caimi Daniele, Beccari Alberto, Kippenberg Tobias J, Seidler Paul
IBM Quantum, IBM Research Europe, Zurich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland.
Integrated Systems Laboratory, Swiss Federal Institute of Technology Zurich (ETH Zürich), CH-8092, Zürich, Switzerland.
Nat Commun. 2022 Apr 19;13(1):2065. doi: 10.1038/s41467-022-28670-5.
Electrically actuated optomechanical resonators provide a route to quantum-coherent, bidirectional conversion of microwave and optical photons. Such devices could enable optical interconnection of quantum computers based on qubits operating at microwave frequencies. Here we present a platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits on an intrinsic silicon substrate. The devices exploit spatially extended, sideband-resolved mechanical breathing modes at ~3.2 GHz, with vacuum optomechanical coupling rates of up to g/2π ≈ 300 kHz. The mechanical modes are driven by integrated microwave electrodes via the inverse piezoelectric effect. We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of ~200 kHz. Our work represents a decisive step towards integration of piezoelectro-optomechanical interfaces with superconducting quantum processors.
电驱动光机械谐振器为微波光子和光学光子的量子相干双向转换提供了一条途径。此类装置能够实现基于在微波频率下运行的量子比特的量子计算机的光学互连。在此,我们展示了一个用于微波到光学转换的平台,该平台包括一个由单晶压电磷化镓制成的光子晶体腔,集成在本征硅衬底上的预制铌电路上。这些装置利用了频率约为3.2吉赫兹的空间扩展、边带分辨的机械呼吸模式,真空光机械耦合率高达g/2π≈300千赫兹。机械模式通过逆压电效应由集成的微波电极驱动。我们估计该系统与超导传输子量子比特的机电耦合率可达约200千赫兹。我们的工作代表了压电光机械接口与超导量子处理器集成方面的决定性一步。