Suppr超能文献

基于强度的掩蔽:一种改善静息态功能磁共振成像功能连接结果的工具。

Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.

作者信息

Peer Michael, Abboud Sami, Hertz Uri, Amedi Amir, Arzy Shahar

机构信息

Department of Medical Neurobiology, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hadassah Hebrew University Medical School, Jerusalem, 91120, Israel.

Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel.

出版信息

Hum Brain Mapp. 2016 Jul;37(7):2407-18. doi: 10.1002/hbm.23182. Epub 2016 Mar 28.

Abstract

Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc.

摘要

静息态功能磁共振成像数据的基于种子点的功能连接性(FC)是一种广泛使用的方法,可用于识别健康和疾病状态下的脑功能网络。基于全脑的信号相关性,FC测量对噪声高度敏感。一个 somewhat neglected source of noise 是在鼻窦和空气腔附近的皮质区域中发现的功能磁共振成像信号衰减,主要位于眶额皮质、前额叶皮质和颞下回皮质。在这些区域记录的血氧水平依赖(BOLD)信号由于磁化率伪影而出现信号丢失,导致多达10%的皮质体素信号减弱且信噪比降低。然而,在FC分析过程中,信号衰减在很大程度上被忽视了。在这里,我们首先证明信号衰减可以通过引入虚假功能相关性并削弱脑区之间现有的相关性来显著影响FC测量。然后,我们提出了一种检测和去除衰减信号的方法(“基于强度的掩蔽”),即通过将基于高斯的模型拟合到信号强度分布并计算每个受试者量身定制的强度阈值。最后,我们将我们的方法应用于实际数据,表明它减少了由信号丢失引起的虚假相关性,并显著提高了在个体中检测功能网络的能力。此外,我们表明我们的方法增加了FC中个体间的相似性,从而能够可靠地区分不同的功能网络。我们建议将基于强度的掩蔽方法作为基于种子点的功能连接性分析预处理中的一种常见做法,并提供用于计算功能磁共振成像数据基于强度的掩膜的软件工具。《人类大脑图谱》37:2407 - 2418, 2016。© 2016威利期刊公司。

相似文献

10

引用本文的文献

10
Brain Coding of Social Network Structure.社交网络结构的大脑编码。
J Neurosci. 2021 Jun 2;41(22):4897-4909. doi: 10.1523/JNEUROSCI.2641-20.2021. Epub 2021 Apr 26.

本文引用的文献

2
A number-form area in the blind.盲人中的数字形式区域。
Nat Commun. 2015 Jan 23;6:6026. doi: 10.1038/ncomms7026.
6
A brain area for visual numerals.一个用于视觉数字的大脑区域。
J Neurosci. 2013 Apr 17;33(16):6709-15. doi: 10.1523/JNEUROSCI.4558-12.2013.
7
Tracking whole-brain connectivity dynamics in the resting state.在静息状态下追踪全脑连接动力学。
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.
10
Functional network organization of the human brain.人类大脑的功能网络组织。
Neuron. 2011 Nov 17;72(4):665-78. doi: 10.1016/j.neuron.2011.09.006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验