Suppr超能文献

通过化学实现更美好的生活:CRISPR/Cas 工程化 T 细胞用于癌症免疫疗法。

Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy.

机构信息

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Curr Opin Immunol. 2022 Feb;74:76-84. doi: 10.1016/j.coi.2021.10.008. Epub 2021 Nov 16.

Abstract

T cells engineered to express transgenes such as chimeric antigen receptors (CAR) or modified T cell receptors (TCR) represent a new pillar of cancer therapy. Use of CRISPR/Cas gene-editing tools now allows even stronger and more precise control over the fate and function of engineered T cell therapies, including multiplex genome editing to facilitate use of off-the-shelf allogeneic T cells and novel approaches which have the potential to overcome some of the limitations of canonical Cas9-mediated DNA cleavage. This review summarizes the CRISPR/Cas techniques that have been used in preclinical research and outlines those that currently being tested in clinical trials.

摘要

经基因工程改造表达嵌合抗原受体(CAR)或修饰的 T 细胞受体(TCR)等转基因的 T 细胞代表癌症治疗的一个新支柱。CRISPR/Cas 基因编辑工具的使用甚至可以对工程化 T 细胞疗法的命运和功能进行更强有力和更精确的控制,包括多重基因组编辑以促进使用现成的同种异体 T 细胞和具有潜在克服一些经典 Cas9 介导的 DNA 切割的局限性的新方法。本文综述了已在临床前研究中使用的 CRISPR/Cas 技术,并概述了目前正在临床试验中测试的技术。

相似文献

1
Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy.
Curr Opin Immunol. 2022 Feb;74:76-84. doi: 10.1016/j.coi.2021.10.008. Epub 2021 Nov 16.
2
CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy.
Adv Drug Deliv Rev. 2020;158:17-35. doi: 10.1016/j.addr.2020.07.015. Epub 2020 Jul 21.
3
CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy.
Curr Res Transl Med. 2018 May;66(2):39-42. doi: 10.1016/j.retram.2018.04.003. Epub 2018 Apr 22.
5
Elucidation of CRISPR-Cas9 application in novel cellular immunotherapy.
Mol Biol Rep. 2022 Jul;49(7):7069-7077. doi: 10.1007/s11033-022-07147-0. Epub 2022 Feb 5.
7
CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy.
J Exp Clin Cancer Res. 2021 Aug 26;40(1):269. doi: 10.1186/s13046-021-02076-5.
8
Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy.
Cancer Med. 2019 Aug;8(9):4254-4264. doi: 10.1002/cam4.2257. Epub 2019 Jun 14.
9
Immunotherapy to get on point with base editing.
Drug Discov Today. 2021 Oct;26(10):2350-2357. doi: 10.1016/j.drudis.2021.04.003. Epub 2021 Apr 20.
10
Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy.
Cancer Treat Res Commun. 2021;27:100289. doi: 10.1016/j.ctarc.2020.100289. Epub 2021 Feb 10.

引用本文的文献

1
Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance.
Nat Rev Cancer. 2024 Sep;24(9):614-628. doi: 10.1038/s41568-024-00723-5. Epub 2024 Jul 24.
2
Development of NK cell-based cancer immunotherapies through receptor engineering.
Cell Mol Immunol. 2024 Apr;21(4):315-331. doi: 10.1038/s41423-024-01145-x. Epub 2024 Mar 5.
3
Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells.
Immunity. 2023 Oct 10;56(10):2388-2407.e9. doi: 10.1016/j.immuni.2023.09.001. Epub 2023 Sep 29.
4
CAR T therapy beyond cancer: the evolution of a living drug.
Nature. 2023 Jul;619(7971):707-715. doi: 10.1038/s41586-023-06243-w. Epub 2023 Jul 26.
5
A lentiviral vector for the production of T cells with an inducible transgene and a constitutively expressed tumour-targeting receptor.
Nat Biomed Eng. 2023 Sep;7(9):1063-1080. doi: 10.1038/s41551-023-01013-5. Epub 2023 Apr 17.
6
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response.
Signal Transduct Target Ther. 2022 Sep 19;7(1):331. doi: 10.1038/s41392-022-01136-2.
7
Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates.
Front Immunol. 2022 Mar 30;13:852147. doi: 10.3389/fimmu.2022.852147. eCollection 2022.

本文引用的文献

1
Base-edited CAR T cells for combinational therapy against T cell malignancies.
Leukemia. 2021 Dec;35(12):3466-3481. doi: 10.1038/s41375-021-01282-6. Epub 2021 May 25.
2
CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells.
Nat Biotechnol. 2022 Feb;40(2):189-193. doi: 10.1038/s41587-021-00901-y. Epub 2021 Apr 29.
3
Production of Human CRISPR-Engineered CAR-T Cells.
J Vis Exp. 2021 Mar 15(169). doi: 10.3791/62299.
4
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.
5
Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer.
Nat Med. 2020 May;26(5):732-740. doi: 10.1038/s41591-020-0840-5. Epub 2020 Apr 27.
6
Directed evolution of adenine base editors with increased activity and therapeutic application.
Nat Biotechnol. 2020 Jul;38(7):892-900. doi: 10.1038/s41587-020-0491-6. Epub 2020 Apr 13.
7
CRISPR-engineered T cells in patients with refractory cancer.
Science. 2020 Feb 28;367(6481). doi: 10.1126/science.aba7365. Epub 2020 Feb 6.
8
Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity.
J Hematol Oncol. 2019 Nov 29;12(1):127. doi: 10.1186/s13045-019-0831-5.
10
Search-and-replace genome editing without double-strand breaks or donor DNA.
Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub 2019 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验