Suppr超能文献

基于机器学习方法的老年女性乳腺 X 线摄影密度分类及其与 BI-RADS 的相关性研究。

Classification of mammographic breast density and its correlation with BI-RADS in elder women using machine learning approach.

机构信息

Health and Social Sciences, Singapore Institute of Technology, Singapore.

出版信息

J Med Imaging Radiat Sci. 2022 Mar;53(1):28-34. doi: 10.1016/j.jmir.2021.10.004. Epub 2021 Nov 17.

Abstract

INTRODUCTION

Mammographic breast density (MBD) is a known risk factor for breast cancer and older women have higher incidence rates of breast cancer occurrence. The Breast Imaging Reporting and Data System (BI-RADS) is a commonly used MBD classification tool for mammogram reporting. However, they have limitations since there are reading inconsistencies between different radiologists with the visual assessment of breast density.

METHODS

Digitised film-screen mammographic images were extracted from the Digital Database for Screening Mammography (DDSM). A machine learning project was developed using commercially available software with several predictive models applied to classify different amount of MBD on mammograms into different density groups. The effectiveness of different predictive models used in classifying the mammograms were tested by receiver operator characteristics (ROC) curve with comparison to the gold standard of BI-RADS classification.

RESULTS

Three predictive models, Decision Tree (Tree), Support Vector Model (SVM) and k-Nearest Neighbour (kNN) showed high AUC values of 0.801, 0.805 and 0.810 respectively. High AUC values for the three predictive models indicates that the accuracy of the model is approaching that of the BI-RADS method.

DISCUSSION

Our machine learning project showed to have capabilities to be potentially used in the clinical settings to help categorise mammograms into extremely dense breasts (BI-RADS Group A) from entirely fatty breasts (BI-RADS Group D).

CONCLUSION

Findings from the present study suggest that the machine learning method is potentially useful to quantify the amount of MBD in mammograms.

摘要

引言

乳腺密度(MBD)是乳腺癌的已知危险因素,老年女性乳腺癌的发病率更高。乳腺影像报告和数据系统(BI-RADS)是一种常用于乳房 X 光摄影报告的 MBD 分类工具。然而,由于不同放射科医生在视觉评估乳房密度方面存在阅读不一致性,它们存在局限性。

方法

从数字筛查乳房 X 光摄影数据库(DDSM)中提取数字化胶片屏幕乳房 X 光图像。使用商业上可获得的软件开发了一个机器学习项目,应用了几个预测模型来将乳房 X 光片上不同数量的 MBD 分类为不同的密度组。通过与 BI-RADS 分类的金标准进行比较,使用接收器工作特征(ROC)曲线测试了不同预测模型在分类乳房 X 光片方面的有效性。

结果

三种预测模型,决策树(Tree)、支持向量机(SVM)和 k-最近邻(kNN)分别显示出 0.801、0.805 和 0.810 的高 AUC 值。这三个预测模型的高 AUC 值表明该模型的准确性接近 BI-RADS 方法。

讨论

我们的机器学习项目表明有可能在临床环境中使用,以帮助将乳房 X 光片分为极度致密型(BI-RADS 组 A)和完全脂肪型(BI-RADS 组 D)。

结论

本研究的结果表明,机器学习方法有可能用于定量乳房 X 光片上的 MBD 量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验