Suppr超能文献

氮能神经递质调节离子通道功能以调节神经元兴奋性。

Nitrergic modulation of ion channel function in regulating neuronal excitability.

机构信息

Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.

School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.

出版信息

Channels (Austin). 2021 Dec;15(1):666-679. doi: 10.1080/19336950.2021.2002594.

Abstract

Nitric oxide (NO) signaling in the brain provides a wide range of functional properties in response to neuronal activity. NO exerts its effects through different signaling pathways, namely, through the canonical soluble guanylyl cyclase-mediated cGMP production route and via post-translational protein modifications. The latter pathways comprise cysteine S-nitrosylation and 3-nitrotyrosination of distinct tyrosine residues. Many ion channels are targeted by one or more of these signaling routes, which leads to their functional regulation under physiological conditions or facilities their dysfunction leading to channelopathies in many pathologies. The resulting alterations in ion channel function changes neuronal excitability, synaptic transmission, and action potential propagation. Transient and activity-dependent NO production mediates reversible ion channel modifications via cGMP and S-nitrosylation signaling, whereas more pronounced and longer-term NO production during conditions of elevated oxidative stress leads to increasingly cumulative and irreversible protein 3-nitrotyrosination. The complexity of this regulation and vast variety of target ion channels and their associated functional alterations presents a challenging task in assessing and understanding the role of NO signaling in physiology and disease.

摘要

脑内一氧化氮(NO)信号转导可响应神经元活动提供广泛的功能特性。NO 通过不同的信号通路发挥作用,即通过经典可溶性鸟苷酸环化酶介导的 cGMP 产生途径和通过翻译后蛋白修饰。后者途径包括不同酪氨酸残基的半胱氨酸 S-亚硝基化和 3-硝基酪氨酸化。许多离子通道被这些信号通路中的一种或多种靶向,这导致它们在生理条件下的功能调节,或者在许多病理情况下导致它们的功能障碍,从而导致通道病。离子通道功能的这种改变改变了神经元的兴奋性、突触传递和动作电位的传播。瞬时和活动依赖性的 NO 产生通过 cGMP 和 S-亚硝基化信号转导介导可逆的离子通道修饰,而在氧化应激升高的情况下更显著和更长期的 NO 产生导致越来越累积和不可逆的蛋白质 3-硝基酪氨酸化。这种调节的复杂性以及大量的靶离子通道及其相关的功能改变,在评估和理解 NO 信号转导在生理和疾病中的作用方面提出了一个具有挑战性的任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f7/8632290/73f41bd782b5/KCHL_A_2002594_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验