Suppr超能文献

利用宽电磁频谱和独特的纳米级特性进行无化学药剂水处理。

Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment.

作者信息

Westerhoff Paul, Alvarez Pedro J J, Kim Jaehong, Li Qilin, Alabastri Alessandro, Halas Naomi J, Villagran Dino, Zimmerman Julie, Wong Michael S

机构信息

School of Sustainable Engineering and the Built Environment, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, Arizona 85287-3005, United States.

Civil and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005.

出版信息

Curr Opin Chem Eng. 2021 Sep;33. doi: 10.1016/j.coche.2021.100709. Epub 2021 Jul 28.

Abstract

Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically-intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies. The last decade was marked by tremendous improvements in nanomaterial design, synthesis, characterization, and assessment of material properties. Realizing the benefits of these advances requires placing greater attention on embedding nanomaterials onto and into surfaces within reactors and applying external energy sources. This will allow nanomaterial-based processes to replace Victorian-aged, chemical intensive water treatment technologies.

摘要

清洁水对于饮用、工业生产过程和水生生物至关重要。现有的水处理及基础设施化学投入大,且基于近百年历史的技术,无法满足现代大型和分散社区的需求。下一代水处理工艺可以通过利用纳米材料从整个电磁光谱中获取能量,从而摆脱过时技术,实现电气化和太阳能技术。过去十年,纳米材料的设计、合成、表征及材料性能评估取得了巨大进展。要实现这些进展的益处,需要更加关注将纳米材料嵌入反应器内部和表面,并应用外部能源。这将使基于纳米材料的工艺取代维多利亚时代的、化学投入大的水处理技术。

相似文献

1
Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment.
Curr Opin Chem Eng. 2021 Sep;33. doi: 10.1016/j.coche.2021.100709. Epub 2021 Jul 28.
2
Water Disinfection in Rural Areas Demands Unconventional Solar Technologies.
Acc Chem Res. 2019 May 21;52(5):1187-1195. doi: 10.1021/acs.accounts.8b00578. Epub 2019 Apr 3.
3
Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.
Acc Chem Res. 2013 Mar 19;46(3):834-43. doi: 10.1021/ar300029v. Epub 2012 Jun 27.
4
5
Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
Acc Chem Res. 2014 Apr 15;47(4):1338-48. doi: 10.1021/ar400309b. Epub 2014 Mar 25.
6
Rational design of nanomaterials for water treatment.
Nanoscale. 2015 Nov 7;7(41):17167-94. doi: 10.1039/c5nr04870b.
7
Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials.
Nat Nanotechnol. 2018 Aug;13(8):642-650. doi: 10.1038/s41565-018-0216-x. Epub 2018 Aug 6.
8
Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
Acc Chem Res. 2021 Dec 7;54(23):4294-4304. doi: 10.1021/acs.accounts.1c00446. Epub 2021 Oct 31.
9
Photothermal Membrane Distillation toward Solar Water Production.
Small Methods. 2021 May;5(5):e2001200. doi: 10.1002/smtd.202001200. Epub 2021 Feb 15.
10
Fate and risks of nanomaterials in aquatic and terrestrial environments.
Acc Chem Res. 2013 Mar 19;46(3):854-62. doi: 10.1021/ar2003368. Epub 2012 Jul 3.

本文引用的文献

1
Survey of industrial perceptions for the use of nanomaterials for in-home drinking water purification devices.
NanoImpact. 2021 Apr;22:100320. doi: 10.1016/j.impact.2021.100320. Epub 2021 Apr 29.
3
Microwave regeneration of granular activated carbon saturated with PFAS.
Water Res. 2021 Jun 15;198:117121. doi: 10.1016/j.watres.2021.117121. Epub 2021 Apr 5.
4
Interfacial Solar Distillation for Freshwater Production: Fate of Volatile and Semivolatile Organic Contaminants.
Environ Sci Technol. 2021 May 4;55(9):6248-6256. doi: 10.1021/acs.est.0c07191. Epub 2021 Apr 8.
5
Nanotechnology and its use in imaging and drug delivery (Review).
Biomed Rep. 2021 May;14(5):42. doi: 10.3892/br.2021.1418. Epub 2021 Mar 5.
7
Glowing nanocrystals enable 3D X-ray imaging.
Nature. 2021 Feb;590(7846):396-397. doi: 10.1038/d41586-021-00350-2.
8
High-resolution X-ray luminescence extension imaging.
Nature. 2021 Feb;590(7846):410-415. doi: 10.1038/s41586-021-03251-6. Epub 2021 Feb 17.
9
Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water.
Environ Sci Technol. 2020 Sep 15;54(18):11584-11593. doi: 10.1021/acs.est.0c03170. Epub 2020 Aug 28.
10
Portable point-of-use photoelectrocatalytic device provides rapid water disinfection.
Sci Total Environ. 2020 Oct 1;737:140044. doi: 10.1016/j.scitotenv.2020.140044. Epub 2020 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验