Suppr超能文献

一种用于预测关于新冠疫苗推文情绪的新型TCNN-Bi-LSTM深度学习模型。

A novel TCNN-Bi-LSTM deep learning model for predicting sentiments of tweets about COVID-19 vaccines.

作者信息

Aslan Serpil

机构信息

Software Engineering Department Malatya Turgut Ozal University Malatya Turkey.

出版信息

Concurr Comput. 2022 Dec 25;34(28):e7387. doi: 10.1002/cpe.7387. Epub 2022 Oct 13.

Abstract

Many researchers in various disciplines have focused on extracting meaningful information from social media platforms in recent years. Identification of behaviors and emotions from user posts is examined under the heading of sentiment analysis (SA) studies using the natural language processing (NLP) techniques. In this study, a novel TCNN-Bi-LSTM model using the two-stage convolutional neural network (TCNN) and bidirectional long short-term memory (Bi-LSTM) architectures was proposed. While TCNN layers enable the extraction of strong local features, the output of these layers feeds the Bi-LSTM model that remembers forward-looking information and capture long-term dependencies. In this study, first, preprocessing steps were applied to the raw dataset. Thus, strong features were extracted from the obtained quality dataset using the FastText word embedding technique that pre-trained with location-based and sub-word information features. The experimental results of the proposed method are promising compared to the baseline deep learning and machine learning models. Also, experimental results show that while the FastText data embedding technique achieves the best performance compared to other word embedding techniques in all deep learning classification models, it has not had the same outstanding success in machine learning models. This study aims to investigate the sentiments of tweets about the COVID-19 vaccines and comments on these tweets among Twitter users by using the power of Twitter data. A new dataset collected from Twitter was constructed to be used in experimental results. This study will facilitate detecting inappropriate, incomplete, and erroneous information about vaccination. The results of this study will enable society to broaden its perspective on the administered vaccines. It can also assist the government and healthcare agencies in planning and implementing the vaccination's promotion on time to achieve the herd immunity provided by the vaccination.

摘要

近年来,各学科的许多研究人员都致力于从社交媒体平台中提取有意义的信息。使用自然语言处理(NLP)技术,在情感分析(SA)研究的框架下,对从用户帖子中识别行为和情绪进行了研究。在本研究中,提出了一种使用两阶段卷积神经网络(TCNN)和双向长短期记忆(Bi-LSTM)架构的新型TCNN-Bi-LSTM模型。虽然TCNN层能够提取强大的局部特征,但这些层的输出会输入到Bi-LSTM模型中,该模型会记住前瞻性信息并捕捉长期依赖关系。在本研究中,首先对原始数据集应用预处理步骤。因此,使用基于位置和子词信息特征进行预训练的FastText词嵌入技术,从获得的高质量数据集中提取了强大的特征。与基线深度学习和机器学习模型相比,所提出方法的实验结果很有前景。此外,实验结果表明,虽然在所有深度学习分类模型中,FastText数据嵌入技术与其他词嵌入技术相比表现最佳,但在机器学习模型中却没有取得同样出色的成功。本研究旨在利用推特数据的力量,调查推特用户对新冠疫苗的推文情绪以及对这些推文的评论。构建了一个从推特收集的新数据集用于实验结果。本研究将有助于检测有关疫苗接种的不适当、不完整和错误信息。本研究的结果将使社会能够拓宽对所接种疫苗的看法。它还可以协助政府和医疗保健机构及时规划和实施疫苗接种的推广,以实现疫苗接种所提供的群体免疫。

相似文献

本文引用的文献

6
An analysis of COVID-19 vaccine sentiments and opinions on Twitter.对 Twitter 上有关 COVID-19 疫苗情绪和观点的分析。
Int J Infect Dis. 2021 Jul;108:256-262. doi: 10.1016/j.ijid.2021.05.059. Epub 2021 May 27.
7
Allergy to COVID-19 vaccines: A current update.新型冠状病毒肺炎疫苗过敏:最新进展
Allergol Int. 2021 Jul;70(3):313-318. doi: 10.1016/j.alit.2021.04.003. Epub 2021 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验