Suppr超能文献

基于新型U-Net的用于透射断层扫描的深度神经网络。

Novel U-net based deep neural networks for transmission tomography.

作者信息

Olasz Csaba, Varga László G, Nagy Antal

机构信息

University of Szeged, 6720, Szeged, Hungary.

出版信息

J Xray Sci Technol. 2022;30(1):13-31. doi: 10.3233/XST-210962.

Abstract

BACKGROUND

The fusion of computer tomography and deep learning is an effective way of achieving improved image quality and artifact reduction in reconstructed images.

OBJECTIVE

In this paper, we present two novel neural network architectures for tomographic reconstruction with reduced effects of beam hardening and electrical noise.

METHODS

In the case of the proposed novel architectures, the image reconstruction step is located inside the neural networks, which allows the network to be trained by taking the mathematical model of the projections into account. This strong connection enables us to enhance the projection data and the reconstructed image together. We tested the two proposed models against three other methods on two datasets. The datasets contain physically correct simulated data, and they show strong signs of beam hardening and electrical noise. We also performed a numerical evaluation of the neural networks on the reconstructed images according to three error measurements and provided a scoring system of the methods derived from the three measures.

RESULTS

The results showed the superiority of the novel architecture called TomoNet2. TomoNet2 improved the quality of the images according to the average Structural Similarity Index from 0.9372 to 0.9977 and 0.9519 to 0.9886 on the two data sets, when compared to the FBP method. This network also yielded the best results for 79.2 and 53.0 percent for the two datasets according to Peak-Signal-to-Noise-Ratio compared to the other improvement techniques.

CONCLUSIONS

Our experimental results showed that the reconstruction step used in skip connections in deep neural networks improves the quality of the reconstructions. We are confident that our proposed method can be effectively applied to other datasets for tomographic purposes.

摘要

背景

计算机断层扫描与深度学习的融合是提高重建图像质量和减少伪影的有效方法。

目的

在本文中,我们提出了两种新颖的神经网络架构,用于断层扫描重建,以减少束硬化和电噪声的影响。

方法

在所提出的新颖架构中,图像重建步骤位于神经网络内部,这使得网络能够在考虑投影数学模型的情况下进行训练。这种紧密的联系使我们能够同时增强投影数据和重建图像。我们在两个数据集上针对其他三种方法测试了所提出的两种模型。这些数据集包含物理上正确的模拟数据,并且显示出明显的束硬化和电噪声迹象。我们还根据三种误差测量对重建图像上的神经网络进行了数值评估,并提供了从这三种测量得出的方法评分系统。

结果

结果显示了名为TomoNet2的新颖架构的优越性。与FBP方法相比,TomoNet2在两个数据集上根据平均结构相似性指数将图像质量从0.9372提高到0.9977,从0.9519提高到0.9886。根据峰值信噪比,与其他改进技术相比,该网络在两个数据集上也分别取得了79.2%和53.0%的最佳结果。

结论

我们的实验结果表明,深度神经网络中跳跃连接中使用的重建步骤提高了重建质量。我们相信,我们提出的方法可以有效地应用于其他用于断层扫描目的的数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验