Vyborna Yuliia, Galas Jean-Christophe, Estevez-Torres André
Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005 Paris, France.
J Am Chem Soc. 2021 Dec 8;143(48):20022-20026. doi: 10.1021/jacs.1c06730. Epub 2021 Nov 22.
Living cells move and change their shape because signaling chemical reactions modify the state of their cytoskeleton, an active gel that converts chemical energy into mechanical forces. To create life-like materials, it is thus key to engineer chemical pathways that drive active gels. Here we describe the preparation of DNA-responsive surfaces that control the activity of a cytoskeletal active gel composed of microtubules: A DNA signal triggers the release of molecular motors from the surface into the gel bulk, generating forces that structure the gel. Depending on the DNA sequence and concentration, the gel forms a periodic band pattern or contracts globally. Finally, we show that the structuration of the active gel can be spatially controlled in the presence of a gradient of DNA concentration. We anticipate that such DNA-controlled active matter will contribute to the development of life-like materials with self-shaping properties.
活细胞能够移动并改变其形状,这是因为信号化学反应改变了它们细胞骨架的状态,细胞骨架是一种活性凝胶,能将化学能转化为机械力。因此,要制造出类似生命的材料,关键在于设计出驱动活性凝胶的化学途径。在此,我们描述了一种DNA响应表面的制备方法,该表面可控制由微管组成的细胞骨架活性凝胶的活性:一个DNA信号会触发分子马达从表面释放到凝胶主体中,产生使凝胶形成特定结构的力。根据DNA序列和浓度的不同,凝胶会形成周期性带状图案或整体收缩。最后,我们表明,在存在DNA浓度梯度的情况下,可以对活性凝胶的结构化进行空间控制。我们预计,这种由DNA控制的活性物质将有助于开发具有自我塑造特性的类似生命的材料。