Talone Benedetta, Pozzi Paolo, Cavagnini Miriam, Polli Dario, Pozzi Gianluca, Mapelli Jonathan
Opt Express. 2021 Nov 8;29(23):37617-37627. doi: 10.1364/OE.435262.
Adaptive optics can improve the performance of optical systems and devices by correcting phase aberrations. While in most applications wavefront sensing is employed to drive the adaptive optics correction, some microscopy methods may require sensorless optimization of the wavefront. In these cases, the correction is performed by describing the aberration as a linear combination of a base of influence functions, optimizing an image quality metric as a function of the coefficients. The influence functions base is generally chosen to either efficiently represent the adaptive device used or to describe generic wavefronts in an orthogonal fashion. A rarely discussed problem is that most correction bases have elements which introduce, together with a correction of the aberration, a shift of the imaging field of view in three dimensions. While simple methods to solve the problem are available for linear microscopy methods, nonlinear microscopy techniques such as multiphoton or second harmonic generation microscopy require non-trivial base determination. In this paper, we discuss the problem, and we present a method for calibrating a shift-less base on a spatial light modulator for two-photon microscopy.
自适应光学可以通过校正相位像差来提高光学系统和设备的性能。虽然在大多数应用中,波前传感用于驱动自适应光学校正,但一些显微镜方法可能需要无传感器的波前优化。在这些情况下,通过将像差描述为影响函数基的线性组合,并将图像质量指标作为系数的函数进行优化来执行校正。影响函数基通常被选择为要么有效地表示所使用的自适应设备,要么以正交方式描述通用波前。一个很少被讨论的问题是,大多数校正基的元素在校正像差的同时,会在三维空间中引入成像视场的偏移。虽然对于线性显微镜方法有简单的方法来解决这个问题,但非线性显微镜技术,如多光子或二次谐波产生显微镜,需要进行非平凡的基确定。在本文中,我们讨论了这个问题,并提出了一种在空间光调制器上为双光子显微镜校准无偏移基的方法。