Suppr超能文献

利用真菌和人类钙调磷酸酶抑制剂结构、生物物理数据和动力学设计选择性和非免疫抑制性 FK506 类似物。

Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs.

机构信息

Department of Biochemistry, Duke Universitygrid.26009.3d, Durham, North Carolina, USA.

Department of Radiology, Duke Universitygrid.26009.3d, Durham, North Carolina, USA.

出版信息

mBio. 2021 Dec 21;12(6):e0300021. doi: 10.1128/mBio.03000-21. Epub 2021 Nov 23.

Abstract

Calcineurin is a critical enzyme in fungal pathogenesis and antifungal drug tolerance and, therefore, an attractive antifungal target. Current clinically accessible calcineurin inhibitors, such as FK506, are immunosuppressive to humans, so exploiting calcineurin inhibition as an antifungal strategy necessitates fungal specificity in order to avoid inhibiting the human pathway. Harnessing fungal calcineurin-inhibitor crystal structures, we recently developed a less immunosuppressive FK506 analog, APX879, with broad-spectrum antifungal activity and demonstrable efficacy in a murine model of invasive fungal infection. Our overarching goal is to better understand, at a molecular level, the interaction determinants of the human and fungal FK506-binding proteins (FKBP12) required for calcineurin inhibition in order to guide the design of fungus-selective, nonimmunosuppressive FK506 analogs. To this end, we characterized high-resolution structures of the Mucor circinelloides FKBP12 bound to FK506 and of the Aspergillus fumigatus, , and human FKBP12 proteins bound to the FK506 analog APX879, which exhibits enhanced selectivity for fungal pathogens. Combining structural, genetic, and biophysical methodologies with molecular dynamics simulations, we identify critical variations in these structurally similar FKBP12-ligand complexes. The work presented here, aimed at the rational design of more effective calcineurin inhibitors, indeed suggests that modifications to the APX879 scaffold centered around the C, C, C, C, and C positions provide the potential to significantly enhance fungal selectivity. Invasive fungal infections are a leading cause of death in the immunocompromised patient population. The rise in drug resistance to current antifungals highlights the urgent need to develop more efficacious and highly selective agents. Numerous investigations of major fungal pathogens have confirmed the critical role of the calcineurin pathway for fungal virulence, making it an attractive target for antifungal development. Although FK506 inhibits calcineurin, it is immunosuppressive in humans and cannot be used as an antifungal. By combining structural, genetic, biophysical, and methodologies, we pinpoint regions of the FK506 scaffold and a less immunosuppressive analog, APX879, centered around the C to C and C to C positions that could be altered with selective extensions and/or deletions to enhance fungal selectivity. This work represents a significant advancement toward realizing calcineurin as a viable target for antifungal drug discovery.

摘要

钙调神经磷酸酶是真菌发病机制和抗真菌药物耐药性的关键酶,因此是一个有吸引力的抗真菌靶点。目前临床上可获得的钙调神经磷酸酶抑制剂,如 FK506,对人类具有免疫抑制作用,因此,为了避免抑制人类途径,需要利用钙调神经磷酸酶抑制作用作为一种抗真菌策略。我们最近利用真菌钙调神经磷酸酶抑制剂晶体结构,开发了一种免疫抑制作用较弱的 FK506 类似物 APX879,该类似物具有广谱抗真菌活性,并在侵袭性真菌感染的小鼠模型中表现出疗效。我们的总体目标是在分子水平上更好地了解抑制钙调神经磷酸酶所需的人源和真菌 FK506 结合蛋白(FKBP12)的相互作用决定因素,以指导设计真菌选择性、非免疫抑制性 FK506 类似物。为此,我们对与 FK506 结合的 Mucor circinelloides FKBP12 以及与 FK506 类似物 APX879 结合的 Aspergillus fumigatus、和人源 FKBP12 蛋白进行了高分辨率结构表征,APX879 对真菌病原体具有更高的选择性。我们将结构、遗传和生物物理方法与分子动力学模拟相结合,鉴定了这些结构相似的 FKBP12-配体复合物中的关键差异。本工作旨在合理设计更有效的钙调神经磷酸酶抑制剂,确实表明围绕 C、C、C、C 和 C 位置对 APX879 骨架进行修饰有可能显著提高真菌选择性。侵袭性真菌感染是免疫功能低下患者死亡的主要原因。目前抗真菌药物耐药性的上升突出表明迫切需要开发更有效和高度选择性的药物。对主要真菌病原体的大量研究证实,钙调神经磷酸酶途径对真菌毒力至关重要,使其成为抗真菌药物开发的一个有吸引力的靶点。尽管 FK506 抑制钙调神经磷酸酶,但它在人类中具有免疫抑制作用,不能用作抗真菌药物。通过结合结构、遗传、生物物理和方法,我们确定了 FK506 支架和免疫抑制作用较弱的类似物 APX879 的围绕 C 到 C 和 C 到 C 位置的区域,这些区域可以通过选择性的延伸和/或缺失进行改变,以增强真菌选择性。这项工作代表着在将钙调神经磷酸酶作为抗真菌药物发现的可行靶点方面取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/569f/8609367/e914bb1cc744/mbio.03000-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验