Dome Patrick A, Jeong Pyeonghwa, Nam Gibeom, Jang Hongjun, Rivera Angela, Floyd Averette Anna, Park Eunchong, Liao Tzu-Chieh, Ciofani Maria, Wu Jianli, Chi Jen-Tsan Ashley, Venters Ronald A, Park Hyun-Ju, Steinbach William J, Juvvadi Praveen R, Heitman Joseph, Hong Jiyong
Department of Chemistry, Duke University, Durham, NC 27708.
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2419883121. doi: 10.1073/pnas.2419883121. Epub 2024 Dec 31.
Invasive fungal infections are a leading cause of death worldwide. Translating molecular insights into clinical benefits is challenging because fungal pathogens and their hosts share similar eukaryotic physiology. Consequently, current antifungal treatments have limited efficacy, may be poorly fungicidal in the host, can exhibit toxicity, and are increasingly compromised by emerging resistance. We have established that the phosphatase calcineurin (CaN) is required for invasive fungal disease and an attractive target for antifungal drug development. CaN is a druggable target, and there is vast clinical experience with the CaN inhibitors FK506 and cyclosporin A (CsA). However, while FK506 and its natural analog FK520 exhibit antifungal activity, they are also immunosuppressive in the host and thus not fungal-selective. We leverage our pathogenic fungal CaN-FK506-FKBP12 complex X-ray structures and biophysical data to support structure-based ligand design as well as structure-activity relationship analyses of broad-spectrum FK506/FK520 derivatives with potent antifungal activity and reduced immunosuppressive activity. Here, we apply molecular docking studies to develop antifungal C22- or C32-modified FK520 derivatives with improved therapeutic index scores. Among them, the C32-modified FK520 derivative JH-FK-44 () demonstrates a significantly improved therapeutic index compared to JH-FK-08, our lead compound to date. NMR binding studies with C32-derivatives are consistent with our hypothesis that C32 modifications disrupt the hydrogen bonding network in the human complex while introducing favorable electrostatic and cation-π interactions with the fungal FKBP12 R86 residue. These findings further reinforce calcineurin inhibition as a promising strategy for antifungal therapy.
侵袭性真菌感染是全球范围内主要的死亡原因。将分子层面的见解转化为临床益处具有挑战性,因为真菌病原体及其宿主具有相似的真核生物生理学特征。因此,当前的抗真菌治疗效果有限,在宿主体内可能杀菌能力不足,会表现出毒性,并且越来越受到新出现的耐药性的影响。我们已经确定磷酸酶钙调神经磷酸酶(CaN)是侵袭性真菌病所必需的,也是抗真菌药物开发的一个有吸引力的靶点。CaN是一个可成药的靶点,并且对于CaN抑制剂FK506和环孢素A(CsA)有丰富的临床经验。然而,虽然FK506及其天然类似物FK520具有抗真菌活性,但它们在宿主体内也具有免疫抑制作用,因此不是真菌选择性的。我们利用致病性真菌的CaN - FK506 - FKBP12复合物的X射线结构和生物物理数据,来支持基于结构的配体设计以及对具有强大抗真菌活性和降低免疫抑制活性的广谱FK506/FK520衍生物进行构效关系分析。在这里,我们应用分子对接研究来开发具有改善治疗指数评分的抗真菌C22或C32修饰的FK520衍生物。其中,C32修饰的FK520衍生物JH - FK - 44()与我们迄今为止的先导化合物JH - FK - 08相比,治疗指数有显著提高。对C32衍生物的核磁共振结合研究与我们的假设一致,即C32修饰破坏了人复合物中的氢键网络,同时与真菌FKBP12的R86残基引入了有利的静电和阳离子 - π相互作用。这些发现进一步强化了钙调神经磷酸酶抑制作为一种有前景的抗真菌治疗策略。