Suppr超能文献

Steppedwedge 群随机对照试验电子预警脓毒症住院病房患者(SCREEN)的统计分析计划。

Statistical analysis plan for the Steppedwedge Cluster Randomized trial of Electronic Early Notification of sepsis in hospitalized ward patients (SCREEN).

机构信息

College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

Biostatistics and Bioinformatics Department, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

出版信息

Trials. 2021 Nov 22;22(1):828. doi: 10.1186/s13063-021-05788-3.

Abstract

BACKGROUND

It is unclear whether screening for sepsis using an electronic alert in hospitalized ward patients improves outcomes. The objective of the Stepped-wedge Cluster Randomized Trial of Electronic Early Notification of Sepsis in Hospitalized Ward Patients (SCREEN) trial is to evaluate whether an electronic screening for sepsis compared to no screening among hospitalized ward patients reduces all-cause 90-day in-hospital mortality.

METHODS AND DESIGN

This study is designed as a stepped-wedge cluster randomized trial in which the unit of randomization or cluster is the hospital ward. An electronic alert for sepsis was developed in the electronic medical record (EMR), with the feature of being active (visible to treating team) or masked (inactive in EMR frontend for the treating team but active in the backend of the EMR). Forty-five clusters in 5 hospitals are randomized into 9 sequences of 5 clusters each to receive the intervention (active alert) over 10 periods, 2 months each, the first being the baseline period. Data are extracted from EMR and are compared between the intervention (active alert) and control group (masked alert). During the study period, some of the hospital wards were allocated to manage patients with COVID-19. The primary outcome of all-cause hospital mortality by day 90 will be compared using a generalized linear mixed model with a binary distribution and a log-link function to estimate the relative risk as a measure of effect. We will include two levels of random effects to account for nested clustering within wards and periods and two levels of fixed effects: hospitals and COVID-19 ward status in addition to the intervention. Results will be expressed as relative risk with a 95% confidence interval.

CONCLUSION

The SCREEN trial provides an opportunity for a novel trial design and analysis of routinely collected and entered data to evaluate the effectiveness of an intervention (alert) for a common medical problem (sepsis in ward patients). In this statistical analysis plan, we outline details of the planned analyses in advance of trial completion. Prior specification of the statistical methods and outcome analysis will facilitate unbiased analyses of these important clinical data.

TRIAL REGISTRATION

ClinicalTrials.gov NCT04078594 . Registered on September 6, 2019.

摘要

背景

目前尚不清楚在住院病房患者中使用电子警报筛查败血症是否能改善预后。住院病房患者中电子预警败血症的 Stepped-wedge 聚类随机试验(SCREEN)的目的是评估与无筛查相比,在住院病房患者中进行电子筛查是否能降低败血症 90 天全因院内死亡率。

方法和设计

本研究设计为电子病历(EMR)中的 Stepped-wedge 聚类随机试验,其随机单位或聚类为医院病房。败血症的电子警报在 EMR 中开发,具有激活(对治疗团队可见)或屏蔽(在 EMR 前端对治疗团队不可见,但在 EMR 后端激活)的功能。5 家医院的 45 个病房分为 9 个 5 个病房的序列,每个序列在 10 个阶段(每个阶段 2 个月)中接受干预(激活警报),第一个阶段为基线阶段。数据从 EMR 中提取,并在干预组(激活警报)和对照组(屏蔽警报)之间进行比较。在研究期间,一些医院病房被分配给管理 COVID-19 患者。使用二项分布和对数链接函数的广义线性混合模型比较 90 天全因住院死亡率的主要结局,以估计相对风险作为效应的衡量指标。我们将包括两个级别的随机效应,以考虑病房和时期内的嵌套聚类以及两个级别的固定效应:医院和 COVID-19 病房状态,除了干预措施。结果将表示为相对风险,置信区间为 95%。

结论

SCREEN 试验为一种新型试验设计和分析提供了机会,该设计和分析利用常规收集和输入的数据来评估一种干预措施(警报)对常见医疗问题(病房患者败血症)的有效性。在本统计分析计划中,我们在试验完成之前提前概述了计划分析的详细信息。对统计方法和结果分析的预先规定将有助于对这些重要的临床数据进行无偏分析。

试验注册

ClinicalTrials.gov NCT04078594。于 2019 年 9 月 6 日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9887/8607586/13bd9c557cb2/13063_2021_5788_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验