Suppr超能文献

UV-adVISor:基于注意力的循环神经网络预测紫外可见光谱。

UV-adVISor: Attention-Based Recurrent Neural Networks to Predict UV-Vis Spectra.

机构信息

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.

Computer Science, NC State University, Raleigh, North Carolina 27606, United States.

出版信息

Anal Chem. 2021 Dec 7;93(48):16076-16085. doi: 10.1021/acs.analchem.1c03741. Epub 2021 Nov 23.

Abstract

Ultraviolet-visible (UV-Vis) absorption spectra are routinely collected as part of high-performance liquid chromatography (HPLC) analysis systems and can be used to identify chemical reaction products by comparison to the reference spectra. Here, we present UV-adVISor as a new computational tool for predicting the UV-Vis spectra from a molecule's structure alone. UV-Vis prediction was approached as a sequence-to-sequence problem. We utilized Long-Short Term Memory and attention-based neural networks with Extended Connectivity Fingerprint Diameter 6 or molecule SMILES to generate predictive models for the UV spectra. We have produced two spectrum datasets (dataset I, = 949, and dataset II, = 2222) using different compound collections and spectrum acquisition methods to train, validate, and test our models. We evaluated the prediction accuracy of the complete spectra by the correspondence of wavelengths of absorbance maxima and with a series of statistical measures (the best test set median model parameters are in parentheses for model II), including RMSE (0.064), (0.71), and dynamic time warping (DTW, 0.194) of the entire spectrum curve. Scrambling molecule structures with the experimental spectra during training resulted in a degraded , confirming the utility of the approaches for prediction. UV-adVISor is able to provide fast and accurate predictions for libraries of compounds.

摘要

紫外-可见(UV-Vis)吸收光谱通常作为高效液相色谱(HPLC)分析系统的一部分进行收集,并且可以通过与参考光谱进行比较来识别化学反应产物。在这里,我们提出了 UV-adVISor 作为一种新的计算工具,用于仅根据分子结构预测 UV-Vis 光谱。UV-Vis 预测被视为序列到序列问题。我们利用长短时记忆和基于注意力的神经网络,使用扩展连接指纹直径 6 或分子 SMILES,为 UV 光谱生成预测模型。我们使用不同的化合物集合和光谱采集方法生成了两个光谱数据集(数据集 I, = 949,数据集 II, = 2222),用于训练、验证和测试我们的模型。我们通过吸光度最大值的波长对应和一系列统计措施(对于模型 II,最佳测试集中位数模型参数在括号中)评估了完整光谱的预测准确性,包括整个光谱曲线的均方根误差(RMSE,0.064)、(0.71)和动态时间规整(DTW,0.194)。在训练过程中用实验光谱对分子结构进行混淆会导致 降低,这证实了这些方法在预测中的实用性。UV-adVISor 能够为化合物库提供快速准确的预测。

相似文献

引用本文的文献

3
Predicting the Hallucinogenic Potential of Molecules Using Artificial Intelligence.利用人工智能预测分子的致幻潜力。
ACS Chem Neurosci. 2024 Aug 21;15(16):3078-3089. doi: 10.1021/acschemneuro.4c00405. Epub 2024 Aug 2.
8
Functional Output Regression for Machine Learning in Materials Science.功能输出回归在材料科学中的机器学习应用。
J Chem Inf Model. 2022 Oct 24;62(20):4837-4851. doi: 10.1021/acs.jcim.2c00626. Epub 2022 Oct 10.
9
The Commoditization of AI for Molecule Design.用于分子设计的人工智能商品化
Artif Intell Life Sci. 2022 Dec;2. doi: 10.1016/j.ailsci.2022.100031. Epub 2022 Jan 24.

本文引用的文献

2
Quantum Machine Learning Algorithms for Drug Discovery Applications.量子机器学习算法在药物发现中的应用。
J Chem Inf Model. 2021 Jun 28;61(6):2641-2647. doi: 10.1021/acs.jcim.1c00166. Epub 2021 May 25.
4
The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.贝塞耳-萨尔皮特方程形式理论:从物理到化学
J Phys Chem Lett. 2020 Sep 3;11(17):7371-7382. doi: 10.1021/acs.jpclett.0c01875. Epub 2020 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验