Suppr超能文献

作为规则发现者的推理语言模型:基于二维金属有机框架的C-H键活化案例研究

Reasoning Language Model as Rule Finder: A Case Study on C-H Bond Activation Using 2D Metal-Organic Frameworks.

作者信息

Lin He, Cui Xiaoqi, Dai Binglin, Chen Jiawei, Su Pengkun, Su Zhaomin, Hu Huihui, Jiang Yibin, Wang Cheng

机构信息

iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.

出版信息

ACS Cent Sci. 2025 Jun 13;11(7):1135-1146. doi: 10.1021/acscentsci.5c00561. eCollection 2025 Jul 23.

Abstract

Unraveling the structure-activity relationship in catalysis requires interpretable models that can extract governing principles from complex data sets. This study explores reasoning large language models (LLMs) as rule-finders for predicting C-(sp)-H activation outcomes catalyzed by 2D Fe-terpyridine MOFs. Surface modifications with molecular modifiers systematically modulate the catalytic microenvironment, but linking modifier structure to activity remains challenging. While traditional descriptors offer high predictive accuracy, LLM-derived rules provide interpretable insights. Integrating LLM reasoning with experimental features (e.g., Fe-loading, modifier ratios) identified para-substituted benzoates with electron-withdrawing or coordinating groups as performance boosters. Validated by machine learning, this rule achieved 82.6% prediction accuracy. Notably, the coordinating group can become electron-withdrawing upon Fe coordination or protonation. The LLM revealed that modifiers tune the catalyst's electronic state rather than directly interacting with intermediates/transition states, bridging data-driven predictions with mechanistic understanding. This highlights LLM's potential to derive chemically meaningful rules in catalysis.

摘要

揭示催化过程中的构效关系需要可解释的模型,这些模型能够从复杂的数据集中提取主导原则。本研究探索将推理大语言模型(LLMs)作为规则发现器,用于预测二维铁-联吡啶金属有机框架催化的C-(sp)-H活化结果。用分子修饰剂进行表面修饰可系统地调节催化微环境,但将修饰剂结构与活性联系起来仍然具有挑战性。虽然传统描述符具有较高的预测准确性,但基于大语言模型得出的规则提供了可解释的见解。将大语言模型推理与实验特征(如铁负载量、修饰剂比例)相结合,确定了具有吸电子或配位基团的对位取代苯甲酸酯为性能增强剂。经机器学习验证,该规则的预测准确率达到82.6%。值得注意的是,配位基团在与铁配位或质子化后可变为吸电子基团。大语言模型表明,修饰剂调节催化剂的电子状态,而不是直接与中间体/过渡态相互作用,从而在数据驱动的预测与机理理解之间架起了桥梁。这突出了大语言模型在催化中得出具有化学意义规则的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验