Suppr超能文献

基于深度学习算法的扫频源光学相干断层扫描图像预测视场。

Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms.

机构信息

Department of Ophthalmology, Pusan National University College of Medicine, Busan, South Korea.

Department of Ophthalmology, Pusan Medical Center, Busan, South Korea.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2020 Nov;258(11):2489-2499. doi: 10.1007/s00417-020-04909-z. Epub 2020 Aug 26.

Abstract

PURPOSE

To develop a deep learning method to predict visual field (VF) from wide-angle swept-source optical coherence tomography (SS-OCT) and compare the performance of three Google Inception architectures.

METHODS

Three deep learning models (with Inception-ResNet-v2, Inception-v3, and Inception-v4) were trained to predict 24-2 VF from the macular ganglion cell-inner plexiform layer and the peripapillary retinal nerve fibre layer map obtained by SS-OCT. The prediction performance of the three models was evaluated by using the root mean square error (RMSE) between the actual and predicted VF. The performance was also compared among different glaucoma severities and Garway-Heath sectorizations.

RESULTS

The training dataset comprised images of 2220 eyes from 1120 subjects, and the test dataset was obtained from another 305 subjects (305 eyes). In all subjects, the global prediction errors (RMSEs) were 4.44 ± 2.09 dB, 4.78 ± 2.38 dB, and 4.85 ± 2.66 dB for the Inception-ResNet-v2, Inception-v3, and Inception-v4 architectures, respectively, and the prediction error of Inception-ResNet-v2 was significantly lower than the other two (P < 0.001). As glaucoma progressed, the prediction error of all three architectures significantly worsened to 6.59 dB, 7.33 dB, and 7.79 dB, respectively. In the analysis of sectors, the nasal sector had the lowest prediction error, followed by the superotemporal sector.

CONCLUSIONS

Inception-ResNet-v2 achieved the best performance, and the global prediction error (RMSE) was 4.44 dB. As glaucoma progressed, the prediction error became larger. This method may help clinicians determine VF, particularly for patients who are unable to undergo a physical VF test.

摘要

目的

开发一种深度学习方法,从广角扫频源光学相干断层扫描(SS-OCT)中预测视野(VF),并比较三种 Google Inception 架构的性能。

方法

三种深度学习模型(使用 Inception-ResNet-v2、Inception-v3 和 Inception-v4)被训练来预测 SS-OCT 获得的黄斑神经节细胞-内丛状层和视盘周围视网膜神经纤维层图的 24-2 VF。通过实际和预测 VF 之间的均方根误差(RMSE)评估三种模型的预测性能。还比较了不同青光眼严重程度和 Garway-Heath 分区之间的性能。

结果

训练数据集包含来自 1120 名受试者的 2220 只眼睛的图像,测试数据集来自另外 305 名受试者(305 只眼睛)。在所有受试者中,全局预测误差(RMSE)分别为 Inception-ResNet-v2、Inception-v3 和 Inception-v4 架构的 4.44±2.09dB、4.78±2.38dB 和 4.85±2.66dB,Inception-ResNet-v2 的预测误差明显低于其他两种(P<0.001)。随着青光眼的进展,所有三种架构的预测误差都显著恶化,分别为 6.59dB、7.33dB 和 7.79dB。在扇区分析中,鼻扇区的预测误差最低,其次是上颞扇区。

结论

Inception-ResNet-v2 实现了最佳性能,全局预测误差(RMSE)为 4.44dB。随着青光眼的进展,预测误差变得更大。该方法可能有助于临床医生确定 VF,特别是对于无法进行物理 VF 测试的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验