Suppr超能文献

全埃尔曼神经网络:一种通过改进的哈里斯鹰算法优化的新型深度递归神经网络,用于肺动脉楔压分类

Fully Elman Neural Network: A Novel Deep Recurrent Neural Network Optimized by an Improved Harris Hawks Algorithm for Classification of Pulmonary Arterial Wedge Pressure.

作者信息

Fetanat Masoud, Stevens Michael, Jain Pankaj, Hayward Christopher, Meijering Erik, Lovell Nigel H

出版信息

IEEE Trans Biomed Eng. 2022 May;69(5):1733-1744. doi: 10.1109/TBME.2021.3129459. Epub 2022 Apr 21.

Abstract

Heart failure (HF) is one of the most prevalent life-threatening cardiovascular diseases in which 6.5 million people are suffering in the USA and more than 23 million worldwide. Mechanical circulatory support of HF patients can be achieved by implanting a left ventricular assist device (LVAD) into HF patients as a bridge to transplant, recovery or destination therapy and can be controlled by measurement of normal and abnormal pulmonary arterial wedge pressure (PAWP). While there are no commercial long-term implantable pressure sensors to measure PAWP, real-time non-invasive estimation of abnormal and normal PAWP becomes vital. In this work, first an improved Harris Hawks optimizer algorithm called HHO+ is presented and tested on 24 unimodal and multimodal benchmark functions. Second, a novel fully Elman neural network (FENN) is proposed to improve the classification performance. Finally, four novel 18-layer deep learning methods of convolutional neural networks (CNNs) with multi-layer perceptron (CNN-MLP), CNN with Elman neural networks (CNN-ENN), CNN with fully Elman neural networks (CNN-FENN), and CNN with fully Elman neural networks optimized by HHO+ algorithm (CNN-FENN-HHO+) for classification of abnormal and normal PAWP using estimated HVAD pump flow were developed and compared. The estimated pump flow was derived by a non-invasive method embedded into the commercial HVAD controller. The proposed methods are evaluated on an imbalanced clinical dataset using 5-fold cross-validation. The proposed CNN-FENN-HHO+ method outperforms the proposed CNN-MLP, CNN-ENN and CNN-FENN methods and improved the classification performance metrics across 5-fold cross-validation with an average sensitivity of 79%, accuracy of 78% and specificity of 76%. The proposed methods can reduce the likelihood of hazardous events like pulmonary congestion and ventricular suction for HF patients and notify identified abnormal cases to the hospital, clinician and cardiologist for emergency action, which can diminish the mortality rate of patients with HF.

摘要

心力衰竭(HF)是最常见的危及生命的心血管疾病之一,美国有650万人患有此病,全球超过2300万人患病。对于HF患者,可通过将左心室辅助装置(LVAD)植入患者体内,作为移植、康复或终末期治疗的桥梁,实现机械循环支持,并且可以通过测量正常和异常的肺动脉楔压(PAWP)来进行控制。虽然目前尚无用于测量PAWP的商业长期植入式压力传感器,但对异常和正常PAWP进行实时无创估计变得至关重要。在这项工作中,首先提出了一种改进的哈里斯鹰优化器算法,称为HHO+,并在24个单峰和多峰基准函数上进行了测试。其次,提出了一种新颖的全埃尔曼神经网络(FENN)以提高分类性能。最后,开发并比较了四种新颖的18层深度学习方法,即具有多层感知器的卷积神经网络(CNN-MLP)、具有埃尔曼神经网络的CNN(CNN-ENN)、具有全埃尔曼神经网络的CNN(CNN-FENN)以及通过HHO+算法优化的具有全埃尔曼神经网络的CNN(CNN-FENN-HHO+),用于使用估计的HVAD泵流量对异常和正常PAWP进行分类。估计的泵流量通过嵌入商业HVAD控制器的无创方法得出。所提出的方法在一个不平衡的临床数据集上使用5折交叉验证进行评估。所提出的CNN-FENN-HHO+方法优于所提出的CNN-MLP、CNN-ENN和CNN-FENN方法,并且在5折交叉验证中提高了分类性能指标,平均灵敏度为79%,准确率为78%,特异性为76%。所提出的方法可以降低HF患者发生肺充血和心室抽吸等危险事件的可能性,并将识别出的异常病例通知医院、临床医生和心脏病专家以采取紧急行动,这可以降低HF患者的死亡率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验