Suppr超能文献

用于基于物联网的阿尔茨海默病系统中错误严重性预测的卷积神经网络算法的优化超参数。

An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System.

机构信息

Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan.

College of Computer and Information Sciences, Jouf University, Sakaka, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Jun 28;2022:7210928. doi: 10.1155/2022/7210928. eCollection 2022.

Abstract

Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital management systems, medical electronic systems, and middle-ware softwares in medical devices. Internet of Things (IoT) medical devices are gaining attention and facilitate the people with new technology. The health condition of the patients are monitored by the IoT devices using sensors, specifically brain diseases such as Alzheimer, Parkinson's, and Traumatic brain injury. Embedded software is present in IoT medical devices and the complexity of software increases day-by-day with the increase in the number and complexity of bugs in the devices. Bugs present in IoT medical devices can have severe consequences such as inaccurate records, circulatory suffering, and death in some cases along with delay in handling patients. There is a need to predict the impact of bugs (severe or nonsevere), especially in case of IoT medical devices due to their critical nature. This research proposes a hybrid bug severity prediction model using convolution neural network (CNN) and Harris Hawk optimization (HHO) based on an optimized hyperparameter of CNN with HHO. The dataset is created, that consists of the bugs present in healthcare systems and IoT medical devices, which is used for evaluation of the proposed model. A preprocessing technique on textual dataset is applied along with a feature extraction technique for CNN embedding layer. In HHO, we define the hyperparameter values of "Batch Size, Learning Rate, Activation Function, Optimizer Parameters, and Kernel Initializers," before training the model. Hybrid model CNN-HHO is applied, and a 10-fold cross validation is performed for evaluation. Results indicate an accuracy of 96.21% with the proposed model.

摘要

软件涉及医疗保健的各个方面,例如预约就诊,以及用于治疗和护理患者的软件系统。许多供应商和顾问开发高质量的医疗保健软件系统,如医院管理系统、医疗电子系统和医疗设备中的中间件软件。物联网 (IoT) 医疗设备越来越受到关注,并为人们带来了新技术。物联网设备使用传感器监测患者的健康状况,特别是阿尔茨海默病、帕金森病和创伤性脑损伤等脑部疾病。嵌入式软件存在于物联网医疗设备中,随着设备中错误数量和复杂性的增加,软件的复杂性日益增加。物联网医疗设备中的错误可能会产生严重后果,例如记录不准确、循环系统受损,在某些情况下甚至会导致死亡,以及处理患者的延误。由于物联网医疗设备的关键性质,需要预测错误(严重或非严重)的影响。本研究提出了一种基于卷积神经网络 (CNN) 和哈里斯鹰优化 (HHO) 的混合错误严重度预测模型,该模型基于 HHO 对 CNN 的优化超参数。创建了一个包含医疗系统和物联网医疗设备中存在的错误的数据集,用于评估所提出的模型。对文本数据集应用预处理技术,并对 CNN 嵌入层应用特征提取技术。在 HHO 中,我们在训练模型之前定义“批大小、学习率、激活函数、优化器参数和内核初始化器”的超参数值。应用混合模型 CNN-HHO 并进行 10 折交叉验证评估。结果表明,所提出的模型的准确率为 96.21%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fe7/9256343/091f34e4f40d/CIN2022-7210928.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验