Suppr超能文献

生成对抗网络生成 Wi-Fi 信号质量的合成特征。

Generative adversarial networks for generating synthetic features for Wi-Fi signal quality.

机构信息

Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa, Lisboa, Portugal.

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Trieste, Italy.

出版信息

PLoS One. 2021 Nov 23;16(11):e0260308. doi: 10.1371/journal.pone.0260308. eCollection 2021.

Abstract

Wireless networks are among the fundamental technologies used to connect people. Considering the constant advancements in the field, telecommunication operators must guarantee a high-quality service to keep their customer portfolio. To ensure this high-quality service, it is common to establish partnerships with specialized technology companies that deliver software services in order to monitor the networks and identify faults and respective solutions. A common barrier faced by these specialized companies is the lack of data to develop and test their products. This paper investigates the use of generative adversarial networks (GANs), which are state-of-the-art generative models, for generating synthetic telecommunication data related to Wi-Fi signal quality. We developed, trained, and compared two of the most used GAN architectures: the Vanilla GAN and the Wasserstein GAN (WGAN). Both models presented satisfactory results and were able to generate synthetic data similar to the real ones. In particular, the distribution of the synthetic data overlaps the distribution of the real data for all of the considered features. Moreover, the considered generative models can reproduce the same associations observed for the synthetic features. We chose the WGAN as the final model, but both models are suitable for addressing the problem at hand.

摘要

无线网络是连接人们的基本技术之一。考虑到该领域的不断进步,电信运营商必须保证高质量的服务来留住他们的客户群。为了确保这种高质量的服务,与提供软件服务的专业技术公司建立合作伙伴关系是很常见的,以便监控网络并识别故障及其相应的解决方案。这些专业公司面临的一个常见障碍是缺乏数据来开发和测试他们的产品。本文研究了使用生成对抗网络(GAN)来生成与 Wi-Fi 信号质量相关的合成电信数据。我们开发、训练并比较了两种最常用的 GAN 架构:Vanilla GAN 和 Wasserstein GAN(WGAN)。这两个模型都取得了令人满意的结果,能够生成与真实数据相似的合成数据。特别是,在所有考虑的特征中,合成数据的分布与真实数据的分布重叠。此外,所考虑的生成模型可以再现为合成特征观察到的相同关联。我们选择了 WGAN 作为最终模型,但这两种模型都适合解决当前的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7441/8610258/856588f9175d/pone.0260308.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验