Suppr超能文献

机器学习与深度学习在心脏磁共振图像视图识别中的比较。

Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images.

机构信息

University of Chicago, Chicago, IL, United States of America.

Department of Medicine, University of Chicago, Chicago, IL, United States of America.

出版信息

Clin Imaging. 2022 Feb;82:121-126. doi: 10.1016/j.clinimag.2021.11.013. Epub 2021 Nov 19.

Abstract

BACKGROUND

Artificial intelligence is increasingly utilized to aid in the interpretation of cardiac magnetic resonance (CMR) studies. One of the first steps is the identification of the imaging plane depicted, which can be achieved by both deep learning (DL) and classical machine learning (ML) techniques without user input. We aimed to compare the accuracy of ML and DL for CMR view classification and to identify potential pitfalls during training and testing of the algorithms.

METHODS

To train our DL and ML algorithms, we first established datasets by retrospectively selecting 200 CMR cases. The models were trained using two different cohorts (passively and actively curated) and applied data augmentation to enhance training. Once trained, the models were validated on an external dataset, consisting of 20 cases acquired at another center. We then compared accuracy metrics and applied class activation mapping (CAM) to visualize DL model performance.

RESULTS

The DL and ML models trained with the passively-curated CMR cohort were 99.1% and 99.3% accurate on the validation set, respectively. However, when tested on the CMR cases with complex anatomy, both models performed poorly. After training and testing our models again on all 200 cases (active cohort), validation on the external dataset resulted in 95% and 90% accuracy, respectively. The CAM analysis depicted heat maps that demonstrated the importance of carefully curating the datasets to be used for training.

CONCLUSIONS

Both DL and ML models can accurately classify CMR images, but DL outperformed ML when classifying images with complex heart anatomy.

摘要

背景

人工智能越来越多地被用于辅助解读心脏磁共振(CMR)研究。第一步是识别所描绘的成像平面,可以通过深度学习(DL)和经典机器学习(ML)技术来实现,而无需用户输入。我们旨在比较 ML 和 DL 对 CMR 视图分类的准确性,并确定算法在训练和测试过程中的潜在问题。

方法

为了训练我们的 DL 和 ML 算法,我们首先通过回顾性选择 200 例 CMR 病例来建立数据集。使用两个不同的队列(被动和主动整理)来训练模型,并应用数据扩充来增强训练。一旦训练完成,我们将模型应用于另一个中心采集的 20 例外部数据集进行验证。然后,我们比较了准确性指标,并应用类激活映射(CAM)来可视化 DL 模型性能。

结果

使用被动整理的 CMR 队列训练的 DL 和 ML 模型在验证集上的准确率分别为 99.1%和 99.3%。然而,当测试具有复杂解剖结构的 CMR 病例时,两个模型的性能都很差。在对所有 200 例病例(主动队列)再次进行训练和测试后,在外部数据集上进行验证的准确率分别为 95%和 90%。CAM 分析描绘了热图,表明需要仔细整理用于训练的数据集。

结论

DL 和 ML 模型都可以准确地对 CMR 图像进行分类,但在对具有复杂心脏解剖结构的图像进行分类时,DL 优于 ML。

相似文献

引用本文的文献

本文引用的文献

5
An overview of deep learning in medical imaging focusing on MRI.深度学习在医学影像中的概述,重点是 MRI。
Z Med Phys. 2019 May;29(2):102-127. doi: 10.1016/j.zemedi.2018.11.002. Epub 2018 Dec 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验