Suppr超能文献

使用深度学习对超声心动图进行快速准确的视图分类。

Fast and accurate view classification of echocardiograms using deep learning.

作者信息

Madani Ali, Arnaout Ramy, Mofrad Mohammad, Arnaout Rima

机构信息

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, 208A Stanley Hall Room 1762, Berkeley, CA 94720, USA.

Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue Dana 615, Boston, MA 02215, USA.

出版信息

NPJ Digit Med. 2018;1. doi: 10.1038/s41746-017-0013-1. Epub 2018 Mar 21.

Abstract

Echocardiography is essential to cardiology. However, the need for human interpretation has limited echocardiography's full potential for precision medicine. Deep learning is an emerging tool for analyzing images but has not yet been widely applied to echocardiograms, partly due to their complex multi-view format. The essential first step toward comprehensive computer-assisted echocardiographic interpretation is determining whether computers can learn to recognize these views. We trained a convolutional neural network to simultaneously classify 15 standard views (12 video, 3 still), based on labeled still images and videos from 267 transthoracic echocardiograms that captured a range of real-world clinical variation. Our model classified among 12 video views with 97.8% overall test accuracy without overfitting. Even on single low-resolution images, accuracy among 15 views was 91.7% vs. 70.2-84.0% for board-certified echocardiographers. Data visualization experiments showed that the model recognizes similarities among related views and classifies using clinically relevant image features. Our results provide a foundation for artificial intelligence-assisted echocardiographic interpretation.

摘要

超声心动图对心脏病学至关重要。然而,由于需要人工解读,超声心动图在精准医疗方面的全部潜力受到了限制。深度学习是一种新兴的图像分析工具,但尚未广泛应用于超声心动图,部分原因是其复杂的多视图格式。迈向全面计算机辅助超声心动图解读的关键第一步是确定计算机是否能够学会识别这些视图。我们基于来自267份经胸超声心动图的标记静态图像和视频训练了一个卷积神经网络,这些图像和视频捕捉了一系列真实世界的临床变化,用于同时对15个标准视图(12个视频视图、3个静态视图)进行分类。我们的模型在12个视频视图中的总体测试准确率为97.8%,且没有过拟合。即使是在单个低分辨率图像上,15个视图的准确率为91.7%,而经委员会认证的超声心动图专家的准确率为70.2 - 84.0%。数据可视化实验表明,该模型能够识别相关视图之间的相似性,并利用临床相关的图像特征进行分类。我们的结果为人工智能辅助超声心动图解读奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0cc/6548341/5b72362ad7bd/41746_2017_13_Fig1_HTML.jpg

相似文献

1
Fast and accurate view classification of echocardiograms using deep learning.
NPJ Digit Med. 2018;1. doi: 10.1038/s41746-017-0013-1. Epub 2018 Mar 21.
3
An Automated View Classification Model for Pediatric Echocardiography Using Artificial Intelligence.
J Am Soc Echocardiogr. 2022 Dec;35(12):1238-1246. doi: 10.1016/j.echo.2022.08.009. Epub 2022 Aug 29.
4
Artificial intelligence-based classification of echocardiographic views.
Eur Heart J Digit Health. 2024 Feb 26;5(3):260-269. doi: 10.1093/ehjdh/ztae015. eCollection 2024 May.
5
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
6
Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography.
Circulation. 2020 Oct 20;142(16):1510-1520. doi: 10.1161/CIRCULATIONAHA.120.047530. Epub 2020 Sep 23.
7
Automatic view classification of contrast and non-contrast echocardiography.
Front Cardiovasc Med. 2022 Sep 14;9:989091. doi: 10.3389/fcvm.2022.989091. eCollection 2022.
9
[Recognition of abnormal changes in echocardiographic videos by an artificial intelligence assisted diagnosis model based on 3D CNN].
Zhonghua Xin Xue Guan Bing Za Zhi. 2023 Jul 24;51(7):750-758. doi: 10.3760/cma.j.cn112148-20230202-00058.
10
Artificial intelligence-enhanced automation for M-mode echocardiographic analysis: ensuring fully automated, reliable, and reproducible measurements.
Int J Cardiovasc Imaging. 2024 Jun;40(6):1245-1256. doi: 10.1007/s10554-024-03095-x. Epub 2024 Apr 23.

引用本文的文献

1
Classification of mitral regurgitation in echocardiography based on deep learning methods.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7847-7861. doi: 10.21037/qims-2025-120. Epub 2025 Aug 11.
2
Role of artificial intelligence in congenital heart disease.
World J Clin Pediatr. 2025 Sep 9;14(3):105926. doi: 10.5409/wjcp.v14.i3.105926.
3
Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.
Discoveries (Craiova). 2025 Jun 30;13(1):e211. doi: 10.15190/d.2025.10. eCollection 2025 Apr-Jun.
4
Artificial intelligence-enhanced echocardiography in cardiovascular disease management.
Nat Rev Cardiol. 2025 Aug 5. doi: 10.1038/s41569-025-01197-0.
6
Global research landscape on artificial intelligence in echocardiography from 1997 to 2024: Bibliometric analysis.
Digit Health. 2025 Jun 30;11:20552076251351201. doi: 10.1177/20552076251351201. eCollection 2025 Jan-Dec.
8
AI-driven healthcare: Fairness in AI healthcare: A survey.
PLOS Digit Health. 2025 May 20;4(5):e0000864. doi: 10.1371/journal.pdig.0000864. eCollection 2025 May.
9
SSL-DA: Semi-and Self-Supervised Learning with Dual Attention for Echocardiogram Segmentation.
J Imaging Inform Med. 2025 May 12. doi: 10.1007/s10278-025-01532-4.
10
Self-supervised learning for label-free segmentation in cardiac ultrasound.
Nat Commun. 2025 Apr 30;16(1):4070. doi: 10.1038/s41467-025-59451-5.

本文引用的文献

1
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
2
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
4
Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.
J Am Coll Cardiol. 2016 Nov 29;68(21):2287-2295. doi: 10.1016/j.jacc.2016.08.062.
5
Automatic apical view classification of echocardiograms using a discriminative learning dictionary.
Med Image Anal. 2017 Feb;36:15-21. doi: 10.1016/j.media.2016.10.007. Epub 2016 Oct 24.
9
Mid-level image representations for real-time heart view plane classification of echocardiograms.
Comput Biol Med. 2015 Nov 1;66:66-81. doi: 10.1016/j.compbiomed.2015.08.004. Epub 2015 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验