Suppr超能文献

GSA:一种独立的开发算法,用于从靶向捕获测序中调用拷贝数并检测同源重组缺陷(HRD)。

GSA: an independent development algorithm for calling copy number and detecting homologous recombination deficiency (HRD) from target capture sequencing.

机构信息

Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.

BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.

出版信息

BMC Bioinformatics. 2021 Nov 23;22(1):562. doi: 10.1186/s12859-021-04487-9.

Abstract

BACKGROUND

The gain or loss of large chromosomal regions or even whole chromosomes is termed as genomic scarring and can be observed as copy number variations resulting from the failure of DNA damage repair.

RESULTS

In this study, a new algorithm called genomic scar analysis (GSA) has developed and validated to calculate homologous recombination deficiency (HRD) score. The two critical submodules were tree recursion (TR) segmentation and filtering, and the estimation and correction of the tumor purity and ploidy. Then, this study evaluated the rationality of segmentation and genotype identification by the GSA algorithm and compared with other two algorithms, PureCN and ASCAT, found that the segmentation result of GSA algorithm was more logical. In addition, the results indicated that the GSA algorithm had an excellent predictive effect on tumor purity and ploidy, if the tumor purity was more than 20%. Furtherly, this study evaluated the HRD scores and BRCA1/2 deficiency status of 195 clinical samples, and the results indicated that the accuracy was 0.98 (comparing with Affymetrix OncoScan™ assay) and the sensitivity was 95.2% (comparing with BRCA1/2 deficiency status), both were well-behaved. Finally, HRD scores and 16 genes mutations (TP53 and 15 HRR pathway genes) were analyzed in 17 cell lines, the results showed that there was higher frequency in HRR pathway genes in high HRD score samples.

CONCLUSIONS

This new algorithm, named as GSA, could effectively and accurately calculate the purity and ploidy of tumor samples through NGS data, and then reflect the degree of genomic instability and large-scale copy number variations of tumor samples.

摘要

背景

大片段染色体的获得或缺失,甚至整条染色体的获得或缺失,被称为基因组重排,可观察到由于 DNA 损伤修复失败而导致的拷贝数变异。

结果

本研究开发并验证了一种新的算法,称为基因组重排分析(GSA),用于计算同源重组缺陷(HRD)评分。该算法的两个关键子模块是树递归(TR)分割和过滤,以及肿瘤纯度和倍性的估计和校正。然后,本研究通过 GSA 算法评估了分割和基因型识别的合理性,并与其他两种算法(PureCN 和 ASCAT)进行了比较,发现 GSA 算法的分割结果更符合逻辑。此外,结果表明,GSA 算法对肿瘤纯度和倍性具有出色的预测效果,如果肿瘤纯度高于 20%。进一步,本研究评估了 195 个临床样本的 HRD 评分和 BRCA1/2 缺失状态,结果表明,其准确性为 0.98(与 Affymetrix OncoScanTM 检测相比),灵敏度为 95.2%(与 BRCA1/2 缺失状态相比),均表现良好。最后,分析了 17 个细胞系中的 HRD 评分和 16 个基因突变(TP53 和 15 个 HRR 通路基因),结果表明,高 HRD 评分样本中 HRR 通路基因的突变频率更高。

结论

这种新算法,命名为 GSA,可通过 NGS 数据有效地、准确地计算肿瘤样本的纯度和倍性,从而反映肿瘤样本的基因组不稳定性和大规模拷贝数变异程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f64/8609767/85d5c01331e1/12859_2021_4487_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验