Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.
Sci Rep. 2021 Nov 23;11(1):22755. doi: 10.1038/s41598-021-01987-9.
Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.
线粒体 DNA(mtDNA)的维持对于维持细胞内功能健康的线粒体群体至关重要。mtDNA 在线粒体网络内的正确复制和分布对于维持线粒体的动态平衡至关重要。然而,mtDNA 在线粒体网络内的分离和分布的基本基础仍不清楚。为了解决这些问题,我们开发了一种算法 Mitomate tracker,以揭示线粒体内部核小体的全局分布。使用这个工具,我们揭示了核小体在整个线粒体网络中的半规则间隔。此外,我们还表明,线粒体分裂通过控制线粒体网络内核小体的分布来主动调节 mtDNA 的分布。具体来说,我们发现携带分裂蛋白 DRP1 和 MYH14 相关疾病突变的原代细胞显示核小体分布改变,并且在靠近细胞核的地方急性富集了较大的核小体。进一步的分析表明,在分裂突变体中观察到的核小体分布改变是网络结构和核小体密度变化的结果。因此,我们的研究为线粒体分裂在核小体分布中的作用以及由分裂缺陷引起的疾病的理解提供了新的见解。