Departamento de física Aplicada, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, Venezuela.
Eur Phys J E Soft Matter. 2021 Nov 23;44(11):141. doi: 10.1140/epje/s10189-021-00151-5.
The Basset-Boussinesq-Oseen (BBO) equation correctly describes the nonuniform motion of a spherical particle at a low Reynolds number. It contains an integral term with a singular kernel which accounts for the diffusion of vorticity around the particle throughout its entire history. However, if there are any departures in either rigidity or shape from a solid sphere, besides the integral force with a singular kernel, the Basset history force, we should add a second history force with a non-singular kernel, related to the shape or composition of the particle. In this work, we introduce a fractional generalized Basset-Boussinesq-Oseen equation which includes both history terms as fractional derivatives. Using the Laplace transform, an integral representation of the solution is obtained. For a driven single particle, the solution shows that memory effects persist indefinitely under rather general driving conditions.
巴塞特-博苏涅斯克-奥森(BBO)方程正确描述了低雷诺数下球形颗粒的非均匀运动。它包含一个具有奇异核的积分项,该核项在整个颗粒历史中描述了涡度在颗粒周围的扩散。然而,如果颗粒的刚性或形状与固体球体有任何偏离,除了具有奇异核的积分力,即巴塞特历史力之外,我们应该添加第二个具有非奇异核的历史力,与颗粒的形状或组成有关。在这项工作中,我们引入了一个分数广义巴塞特-博苏涅斯克-奥森方程,其中包含两个历史项作为分数导数。利用拉普拉斯变换,得到了解的积分表示。对于一个受迫的单个颗粒,解表明在相当一般的驱动条件下,记忆效应会无限期地持续下去。