Suppr超能文献

将个体纳入可靠性:层次模型中个体内同质性方差的贝叶斯检验。

Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models.

机构信息

University of California, Davis, CA, USA.

出版信息

Behav Res Methods. 2022 Jun;54(3):1272-1290. doi: 10.3758/s13428-021-01646-x. Epub 2021 Nov 23.

Abstract

Measurement reliability is a fundamental concept in psychology. It is traditionally considered a stable property of a questionnaire, measurement device, or experimental task. Although intraclass correlation coefficients (ICC) are often used to assess reliability in repeated measure designs, their descriptive nature depends upon the assumption of a common within-person variance. This work focuses on the presumption that each individual is adequately described by the average within-person variance in hierarchical models. And thus whether reliability generalizes to the individual level, which leads directly into the notion of individually varying ICCs. In particular, we introduce a novel approach, using the Bayes factor, wherein a researcher can directly test for homogeneous within-person variance in hierarchical models. Additionally, we introduce a membership model that allows for classifying which (and how many) individuals belong to the common variance model. The utility of our methodology is demonstrated on cognitive inhibition tasks. We find that heterogeneous within-person variance is a defining feature of these tasks, and in one case, the ratio between the largest to smallest within-person variance exceeded 20. This translates into a tenfold difference in person-specific reliability! We also find that few individuals belong to the common variance model, and thus traditional reliability indices are potentially masking important individual variation. We discuss the implications of our findings and possible future directions. The methods are implemented in the R package vICC.

摘要

测量可靠性是心理学中的一个基本概念。它通常被认为是问卷、测量设备或实验任务的稳定特性。尽管在重复测量设计中经常使用组内相关系数(ICC)来评估可靠性,但它们的描述性质取决于个体内方差的共同假设。这项工作侧重于假设每个个体都可以通过层次模型中的个体内平均方差来充分描述。因此,可靠性是否可以推广到个体水平,这直接引出了个体间 ICC 变化的概念。特别是,我们引入了一种新方法,使用贝叶斯因子,研究人员可以直接在层次模型中测试个体内方差的同质性。此外,我们引入了一种成员模型,允许对属于共同方差模型的个体(以及有多少个个体)进行分类。我们的方法在认知抑制任务中得到了验证。我们发现,个体内方差的异质性是这些任务的一个显著特征,在一种情况下,个体内最大方差与最小方差的比值超过 20。这意味着个体特定可靠性的差异高达 10 倍!我们还发现,很少有个体属于共同方差模型,因此传统的可靠性指数可能掩盖了重要的个体差异。我们讨论了我们发现的结果的意义和可能的未来方向。这些方法已在 R 包 vICC 中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df4/9170648/af418bf29a61/13428_2021_1646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验