Suppr超能文献

学习的贝叶斯非线性混合效应位置尺度模型。

A Bayesian nonlinear mixed-effects location scale model for learning.

机构信息

University of California, Davis, Davis, CA, USA.

Ulm University, Ulm, Germany.

出版信息

Behav Res Methods. 2019 Oct;51(5):1968-1986. doi: 10.3758/s13428-019-01255-9.

Abstract

We present a Bayesian nonlinear mixed-effects location scale model (NL-MELSM). The NL-MELSM allows for fitting nonlinear functions to the location, or individual means, and the scale, or within-person variance. Specifically, in the context of learning, this model allows the within-person variance to follow a nonlinear trajectory, where it can be determined whether variability reduces during learning. It incorporates a sub-model that can predict nonlinear parameters for both the location and scale. This specification estimates random effects for all nonlinear location and scale parameters that are drawn from a common multivariate distribution. This allows estimation of covariances among the random effects, within and across the location and the scale. These covariances offer new insights into the interplay between individual mean structures and intra-individual variability in nonlinear parameters. We take a fully Bayesian approach, not only for ease of estimation but also for inference because it provides the necessary and consistent information for use in psychological applications, such as model selection and hypothesis testing. To illustrate the model, we use data from 333 individuals, consisting of three age groups, who participated in five learning trials that assessed verbal memory. In an exploratory context, we demonstrate that fitting a nonlinear function to the within-person variance, and allowing for individual variation therein, improves predictive accuracy compared to customary modeling techniques (e.g., assuming constant variance). We conclude by discussing the usefulness, limitations, and future directions of the NL-MELSM.

摘要

我们提出了一种贝叶斯非线性混合效应位置尺度模型(NL-MELSM)。NL-MELSM 允许将非线性函数拟合到位置(或个体均值)和尺度(或个体内方差)上。具体来说,在学习背景下,该模型允许个体内方差遵循非线性轨迹,从而可以确定在学习过程中是否会减少变异性。它包含一个子模型,可以预测位置和尺度的非线性参数。这种规格从共同的多元分布中为所有非线性位置和尺度参数的随机效应进行估计。这允许在位置和尺度内和之间估计随机效应的协方差。这些协方差提供了关于非线性参数中个体均值结构和个体内变异性之间相互作用的新见解。我们采用完全贝叶斯方法,不仅是为了便于估计,也是为了进行推理,因为它为心理应用(如模型选择和假设检验)提供了必要和一致的信息。为了说明该模型,我们使用了来自 333 名个体的数据,这些个体分为三个年龄组,他们参加了五次评估言语记忆的学习试验。在探索性背景下,我们证明,与常用的建模技术(例如,假设方差恒定)相比,将非线性函数拟合到个体内方差并允许个体内方差存在差异可以提高预测准确性。最后,我们讨论了 NL-MELSM 的有用性、局限性和未来方向。

相似文献

3
A Mixed-Effects Location Scale Model for Dyadic Interactions.混合效应位置尺度模型在对偶交互中的应用。
Multivariate Behav Res. 2018 Sep-Oct;53(5):756-775. doi: 10.1080/00273171.2018.1477577. Epub 2018 Nov 5.

引用本文的文献

本文引用的文献

3
A Mixed-Effects Location Scale Model for Dyadic Interactions.混合效应位置尺度模型在对偶交互中的应用。
Multivariate Behav Res. 2018 Sep-Oct;53(5):756-775. doi: 10.1080/00273171.2018.1477577. Epub 2018 Nov 5.
4
Refining the law of practice.精炼实践法则。
Psychol Rev. 2018 Jul;125(4):592-605. doi: 10.1037/rev0000105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验