Suppr超能文献

几何网络分析为接受免疫检查点抑制剂治疗的高级别浆液性卵巢癌患者提供预后信息。

Geometric network analysis provides prognostic information in patients with high grade serous carcinoma of the ovary treated with immune checkpoint inhibitors.

作者信息

Elkin Rena, Oh Jung Hun, Liu Ying L, Selenica Pier, Weigelt Britta, Reis-Filho Jorge S, Zamarin Dmitriy, Deasy Joseph O, Norton Larry, Levine Arnold J, Tannenbaum Allen R

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

NPJ Genom Med. 2021 Nov 24;6(1):99. doi: 10.1038/s41525-021-00259-9.

Abstract

Network analysis methods can potentially quantify cancer aberrations in gene networks without introducing fitted parameters or variable selection. A new network curvature-based method is introduced to provide an integrated measure of variability within cancer gene networks. The method is applied to high-grade serous ovarian cancers (HGSOCs) to predict response to immune checkpoint inhibitors (ICIs) and to rank key genes associated with prognosis. Copy number alterations (CNAs) from targeted and whole-exome sequencing data were extracted for HGSOC patients (n = 45) treated with ICIs. CNAs at a gene level were represented on a protein-protein interaction network to define patient-specific networks with a fixed topology. A version of Ollivier-Ricci curvature was used to identify genes that play a potentially key role in response to immunotherapy and further to stratify patients at high risk of mortality. Overall survival (OS) was defined as the time from the start of ICI treatment to either death or last follow-up. Kaplan-Meier analysis with log-rank test was performed to assess OS between the high and low curvature classified groups. The network curvature analysis stratified patients at high risk of mortality with p = 0.00047 in Kaplan-Meier analysis in HGSOC patients receiving ICI. Genes with high curvature were in accordance with CNAs relevant to ovarian cancer. Network curvature using CNAs has the potential to be a novel predictor for OS in HGSOC patients treated with immunotherapy.

摘要

网络分析方法有可能在不引入拟合参数或变量选择的情况下,对基因网络中的癌症畸变进行量化。本文引入了一种基于网络曲率的新方法,以提供癌症基因网络内变异性的综合度量。该方法应用于高级别浆液性卵巢癌(HGSOC),以预测对免疫检查点抑制剂(ICI)的反应,并对与预后相关的关键基因进行排名。从接受ICI治疗的HGSOC患者(n = 45)的靶向和全外显子测序数据中提取拷贝数改变(CNA)。基因水平的CNA在蛋白质-蛋白质相互作用网络上表示,以定义具有固定拓扑结构的患者特异性网络。使用一种奥利维耶-里奇曲率来识别在免疫治疗反应中可能起关键作用的基因,并进一步对高死亡风险患者进行分层。总生存期(OS)定义为从ICI治疗开始到死亡或最后一次随访的时间。采用Kaplan-Meier分析和对数秩检验来评估高曲率和低曲率分类组之间的OS。在接受ICI的HGSOC患者的Kaplan-Meier分析中,网络曲率分析将高死亡风险患者分层,p = 0.00047。高曲率基因与卵巢癌相关的CNA一致。使用CNA的网络曲率有可能成为接受免疫治疗的HGSOC患者OS的一种新预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5858/8613272/0f5591d02712/41525_2021_259_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验