Suppr超能文献

一种神经心理社会特征可预测肠易激综合征女性患者的症状纵向变化。

A neuropsychosocial signature predicts longitudinal symptom changes in women with irritable bowel syndrome.

作者信息

Bhatt Ravi R, Gupta Arpana, Labus Jennifer S, Liu Cathy, Vora Priten P, Naliboff Bruce D, Mayer Emeran A

机构信息

Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, USA.

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, USA.

出版信息

Mol Psychiatry. 2022 Mar;27(3):1774-1791. doi: 10.1038/s41380-021-01375-9. Epub 2021 Nov 24.

Abstract

Irritable bowel syndrome (IBS) is a common disorder of brain-gut interactions characterized by chronic abdominal pain, altered bowel movements, often accompanied by somatic and psychiatric comorbidities. We aimed to test the hypothesis that a baseline phenotype composed of multi-modal neuroimaging and clinical features predicts clinical improvement on the IBS Symptom Severity Scale (IBS-SSS) at 3 and 12 months without any targeted intervention. Female participants (N = 60) were identified as "improvers" (50-point decrease on IBS-SSS from baseline) or "non-improvers." Data integration analysis using latent components (DIABLO) was applied to a training and test dataset to determine whether a limited number of sets of multiple correlated baseline'omics data types, including brain morphometry, anatomical connectivity, resting-state functional connectivity, and clinical features could accurately predict improver status. The derived predictive models predicted improvement status at 3-months and 12-months with 91% and 83% accuracy, respectively. Across both time points, non-improvers were classified as having greater correlated morphometry, anatomical connectivity and resting-state functional connectivity characteristics within salience and sensorimotor networks associated with greater pain unpleasantness, but lower default mode network integrity and connectivity. This suggests that non-improvers have a greater engagement of attentional systems to perseverate on painful visceral stimuli, predicting IBS exacerbation. The ability of baseline multimodal brain-clinical signatures to predict symptom trajectories may have implications in guiding integrative treatment in the age of precision medicine, such as treatments targeted at changing attentional systems such as mindfulness or cognitive behavioral therapy.

摘要

肠易激综合征(IBS)是一种常见的脑-肠互动紊乱疾病,其特征为慢性腹痛、排便习惯改变,常伴有躯体和精神共病。我们旨在检验这样一个假设:由多模态神经影像学和临床特征组成的基线表型能够预测在无任何针对性干预的情况下,3个月和12个月时肠易激综合征症状严重程度量表(IBS-SSS)的临床改善情况。女性参与者(N = 60)被分为“改善者”(IBS-SSS较基线下降50分)或“非改善者”。使用潜在成分的数据整合分析(DIABLO)应用于训练和测试数据集,以确定包括脑形态测量、解剖连接性、静息态功能连接性和临床特征在内的有限数量的多组相关基线“组学”数据类型是否能够准确预测改善者状态。所推导的预测模型预测3个月和12个月时改善状态的准确率分别为91%和83%。在两个时间点上,非改善者在与更大疼痛不适感相关的突显和感觉运动网络内具有更大的相关形态测量、解剖连接性和静息态功能连接性特征,但默认模式网络完整性和连接性较低。这表明非改善者在注意力系统方面有更大的参与度,会持续关注疼痛的内脏刺激,预示着肠易激综合征的加重。基线多模态脑-临床特征预测症状轨迹的能力可能对精准医学时代的综合治疗具有指导意义,例如针对改变注意力系统的治疗方法,如正念或认知行为疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8288/9095468/86ae6f967bde/41380_2021_1375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验