Suppr超能文献

scCODA 是一种用于分析单细胞组成数据的贝叶斯模型。

scCODA is a Bayesian model for compositional single-cell data analysis.

机构信息

Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

Department of Statistics, Ludwig-Maximilians-Universität München, München, Germany.

出版信息

Nat Commun. 2021 Nov 25;12(1):6876. doi: 10.1038/s41467-021-27150-6.

Abstract

Compositional changes of cell types are main drivers of biological processes. Their detection through single-cell experiments is difficult due to the compositionality of the data and low sample sizes. We introduce scCODA ( https://github.com/theislab/scCODA ), a Bayesian model addressing these issues enabling the study of complex cell type effects in disease, and other stimuli. scCODA demonstrated excellent detection performance, while reliably controlling for false discoveries, and identified experimentally verified cell type changes that were missed in original analyses.

摘要

细胞类型的组成变化是生物过程的主要驱动因素。由于数据的组成性和低样本量,通过单细胞实验进行检测具有一定难度。我们引入了 scCODA(https://github.com/theislab/scCODA),这是一个贝叶斯模型,可以解决这些问题,从而能够研究疾病和其他刺激因素中的复杂细胞类型效应。scCODA 表现出出色的检测性能,同时可靠地控制了假发现,并且鉴定了在原始分析中遗漏的经过实验验证的细胞类型变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c927/8616929/e34c524d9dfa/41467_2021_27150_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验