Department of Applied Physics.
Department of Electrical Engineering, University of Granada, Granada, Spain.
Bioinformatics. 2018 Mar 15;34(6):964-970. doi: 10.1093/bioinformatics/btx605.
Molecular profiling techniques have evolved to single-cell assays, where dense molecular profiles are screened simultaneously for each cell in a population. High-throughput single-cell experiments from a heterogeneous population of cells can be experimentally and computationally sorted as a sequence of samples pseudo-temporally ordered samples. The analysis of these datasets, comprising a large number of samples, has the potential to uncover the dynamics of the underlying regulatory programmes.
We present a novel approach for modelling and inferring gene regulatory networks from high-throughput time series and pseudo-temporally sorted single-cell data. Our method is based on a first-order autoregressive moving-average model and it infers the gene regulatory network within a variational Bayesian framework. We validate our method with synthetic data and we apply it to single cell qPCR and RNA-Seq data for mouse embryonic cells and hematopoietic cells in zebra fish.
The method presented in this article is available at https://github.com/mscastillo/GRNVBEM.
分子分析技术已经发展到单细胞分析,在这种技术中,对群体中的每个细胞同时进行密集的分子分析。高通量单细胞实验可以对异质细胞群体进行实验和计算排序,这些样本是按伪时间顺序排列的。对这些包含大量样本的数据集的分析有可能揭示潜在的调控程序的动态。
我们提出了一种新的方法,用于从高通量时间序列和伪时间排序的单细胞数据中对基因调控网络进行建模和推断。我们的方法基于一阶自回归移动平均模型,并在变分贝叶斯框架内推断基因调控网络。我们用合成数据验证了我们的方法,并将其应用于小鼠胚胎细胞和斑马鱼造血细胞的单细胞 qPCR 和 RNA-Seq 数据。
本文中提出的方法可在 https://github.com/mscastillo/GRNVBEM 上获得。