Department of Computer Science, Biotech, Technical University Dresden, Dresden, Germany.
ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft M.B.H., 01307, Dresden, Germany.
Sci Rep. 2021 Nov 25;11(1):22932. doi: 10.1038/s41598-021-02385-x.
This study used explainable artificial intelligence for data-driven identification of extrastriatal brain regions that can contribute to the interpretation of dopamine transporter SPECT with I-FP-CIT in parkinsonian syndromes. A total of 1306 I-FP-CIT-SPECT were included retrospectively. Binary classification as 'reduced' or 'normal' striatal I-FP-CIT uptake by an experienced reader served as standard-of-truth. A custom-made 3-dimensional convolutional neural network (CNN) was trained for classification of the SPECT images with 1006 randomly selected images in three different settings: "full image", "striatum only" (3-dimensional region covering the striata cropped from the full image), "without striatum" (full image with striatal region removed). The remaining 300 SPECT images were used to test the CNN classification performance. Layer-wise relevance propagation (LRP) was used for voxelwise quantification of the relevance for the CNN-based classification in this test set. Overall accuracy of CNN-based classification was 97.0%, 95.7%, and 69.3% in the "full image", "striatum only", and "without striatum" setting. Prominent contributions in the LRP-based relevance maps beyond the striatal signal were detected in insula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal cortex, superior frontal lobe, and pons, suggesting that I-FP-CIT uptake in these brain regions provides clinically useful information for the differentiation of neurodegenerative and non-neurodegenerative parkinsonian syndromes.
本研究使用可解释人工智能进行数据驱动的分析,以确定能够帮助解释帕金森综合征中 I-FP-CIT SPECT 的纹状体外脑区。共回顾性纳入 1306 例 I-FP-CIT-SPECT。经验丰富的读者对纹状体 I-FP-CIT 摄取的“减少”或“正常”进行二进制分类作为标准。使用定制的 3 维卷积神经网络(CNN),在三种不同设置下对 1006 张随机选择的 SPECT 图像进行分类:“全图像”、“仅纹状体”(从全图像中裁剪出的 3 维区域覆盖纹状体)、“无纹状体”(去除纹状体的全图像)。其余 300 张 SPECT 图像用于测试 CNN 分类性能。使用层间相关性传播(LRP)对该测试集中基于 CNN 的分类的相关性进行体素定量。基于 CNN 的分类的整体准确性分别为 97.0%、95.7%和 69.3%,在“全图像”、“仅纹状体”和“无纹状体”设置下。在基于 LRP 的相关性图中,除了纹状体信号外,还在岛叶、杏仁核、腹内侧前额叶皮质、丘脑、前颞叶皮质、额上回和脑桥中检测到显著的相关性,表明这些脑区的 I-FP-CIT 摄取为神经退行性和非神经退行性帕金森综合征的鉴别提供了临床有用的信息。