Suppr超能文献

通过微调深度学习模型识别膝关节植入物

Knee Implant Identification by Fine-Tuning Deep Learning Models.

作者信息

Sharma Sukkrit, Batta Vineet, Chidambaranathan Malathy, Mathialagan Prabhakaran, Mani Gayathri, Kiruthika M, Datta Barun, Kamineni Srinath, Reddy Guruva, Masilamani Suhas, Vijayan Sandeep, Amanatullah Derek F

机构信息

Department of Computer Science and Engineering, School of Computing, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamil Nadu 603203 India.

Department of Orthopaedic, Luton and Dunstable University College London Hospitals NHS Foundation Trust, Luton, UK.

出版信息

Indian J Orthop. 2021 Sep 28;55(5):1295-1305. doi: 10.1007/s43465-021-00529-9. eCollection 2021 Oct.

Abstract

BACKGROUND

Identification of implant model from primary knee arthroplasty in pre-op planning of revision surgery is a challenging task with added delay. The direct impact of this inability to identify the implants in time leads to the increase in complexity in surgery. Deep learning in the medical field for diagnosis has shown promising results in getting better with every iteration. This study aims to find an optimal solution for the problem of identification of make and model of knee arthroplasty prosthesis using automated deep learning models.

METHODS

Deep learning algorithms were used to classify knee arthroplasty implant models. The training, validation and test comprised of 1078 radiographs with a total of 6 knee arthroplasty implant models with anterior-posterior (AP) and lateral views. The performance of the model was calculated using accuracy, sensitivity, and area under the receiver-operating characteristic curve (AUC), which were compared against multiple models trained for comparative in-depth analysis with saliency maps for visualization.

RESULTS

After training for a total of 30 epochs on all 6 models, the model performing the best obtained an accuracy of 96.38%, the sensitivity of 97.2% and AUC of 0.985 on an external testing dataset consisting of 162 radiographs. The best performing model correctly and uniquely identified the implants which could be visualized using saliency maps.

CONCLUSION

Deep learning models can be used to differentiate between 6 knee arthroplasty implant models. Saliency maps give us a better understanding of which regions the model is focusing on while predicting the results.

摘要

背景

在翻修手术的术前规划中,从初次膝关节置换术中识别植入物模型是一项具有挑战性的任务,且会增加手术延迟。无法及时识别植入物的直接影响导致手术复杂性增加。医学领域中用于诊断的深度学习在每次迭代中都显示出了有希望的结果。本研究旨在找到一种使用自动化深度学习模型识别膝关节置换假体品牌和型号问题的最佳解决方案。

方法

使用深度学习算法对膝关节置换植入物模型进行分类。训练、验证和测试包括1078张X光片,共有6种膝关节置换植入物模型,包括前后位(AP)和侧位视图。使用准确率、敏感度和受试者工作特征曲线下面积(AUC)来计算模型的性能,并与通过显著性图进行可视化的多个用于比较深入分析而训练的模型进行比较。

结果

在对所有6种模型总共训练30个轮次后,表现最佳的模型在由162张X光片组成的外部测试数据集上获得了96.38%的准确率、97.2%的敏感度和0.985的AUC。表现最佳的模型正确且唯一地识别了可以使用显著性图可视化的植入物。

结论

深度学习模型可用于区分6种膝关节置换植入物模型。显著性图让我们更好地了解模型在预测结果时关注的是哪些区域。

相似文献

1
Knee Implant Identification by Fine-Tuning Deep Learning Models.通过微调深度学习模型识别膝关节植入物
Indian J Orthop. 2021 Sep 28;55(5):1295-1305. doi: 10.1007/s43465-021-00529-9. eCollection 2021 Oct.

本文引用的文献

2
Classifying shoulder implants in X-ray images using deep learning.使用深度学习对X射线图像中的肩部植入物进行分类。
Comput Struct Biotechnol J. 2020 Apr 15;18:967-972. doi: 10.1016/j.csbj.2020.04.005. eCollection 2020.
3
Machine learning-based identification of hip arthroplasty designs.基于机器学习的髋关节置换术设计识别
J Orthop Translat. 2019 Dec 20;21:13-17. doi: 10.1016/j.jot.2019.11.004. eCollection 2020 Mar.
5
Cardiac Rhythm Device Identification Using Neural Networks.使用神经网络进行心脏节律设备识别。
JACC Clin Electrophysiol. 2019 May;5(5):576-586. doi: 10.1016/j.jacep.2019.02.003. Epub 2019 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验