Suppr超能文献

利用空间随机化识别保护区网络与脆弱人群之间的不匹配情况。

Identifying mismatches between conservation area networks and vulnerable populations using spatial randomization.

作者信息

Nunes Laura A, Ribic Christine A, Zuckerberg Benjamin

机构信息

Department of Forest and Wildlife Ecology University of Wisconsin - Madison Madison Wisconsin USA.

U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit University of Wisconsin Madison Wisconsin USA.

出版信息

Ecol Evol. 2021 Oct 25;11(22):16006-16020. doi: 10.1002/ece3.8270. eCollection 2021 Nov.

Abstract

Grassland birds are among the most globally threatened bird groups due to substantial degradation of native grassland habitats. However, the current network of grassland conservation areas may not be adequate for halting population declines and biodiversity loss. Here, we evaluate a network of grassland conservation areas within Wisconsin, U.S.A., that includes both large Focal Landscapes and smaller targeted conservation areas (e.g., Grassland Bird Conservation Areas, GBCAs) established within them. To date, this conservation network has lacked baseline information to assess whether the current placement of these conservation areas aligns with population hot spots of grassland-dependent taxa. To do so, we fitted data from thousands of avian point-count surveys collected by citizen scientists as part of Wisconsin's Breeding Bird Atlas II with multinomial -mixture models to estimate habitat-abundance relationships, develop spatially explicit predictions of abundance, and establish ecological baselines within priority conservation areas for a suite of obligate grassland songbirds. Next, we developed spatial randomization tests to evaluate the placement of this conservation network relative to randomly placed conservation networks. Overall, less than 20% of species statewide populations were found within the current grassland conservation network. Spatial tests demonstrated a high representation of this bird assemblage within the entire conservation network, but with a bias toward birds associated with moderately tallgrasses relative to those associated with shortgrasses or tallgrasses. We also found that GBCAs had higher representation at Focal Landscape rather than statewide scales. Here, we demonstrated how combining citizen science data with hierarchical modeling is a powerful tool for estimating ecological baselines and conducting large-scale evaluations of an existing conservation network for multiple grassland birds. Our flexible spatial randomization approach offers the potential to be applied to other protected area networks and serves as a complementary tool for conservation planning efforts globally.

摘要

由于原生草原栖息地的大幅退化,草原鸟类是全球受威胁最严重的鸟类群体之一。然而,当前的草原保护区网络可能不足以阻止种群数量下降和生物多样性丧失。在此,我们评估了美国威斯康星州的一个草原保护区网络,该网络包括大型重点景观区以及在其中设立的较小的目标保护区(如草原鸟类保护区,GBCAs)。迄今为止,这个保护网络缺乏基线信息来评估这些保护区的当前布局是否与依赖草原的分类群的种群热点相匹配。为此,我们将公民科学家作为威斯康星州繁殖鸟类图鉴II的一部分收集的数千次鸟类点计数调查数据,与多项混合模型进行拟合,以估计栖息地丰度关系,开发丰度的空间明确预测,并为一系列专性草原鸣禽在优先保护区内建立生态基线。接下来,我们开展空间随机化测试,以评估这个保护网络相对于随机布局的保护网络的布局情况。总体而言,在当前的草原保护网络中发现的全州物种种群不到20%。空间测试表明,在整个保护网络中,这种鸟类组合具有较高的代表性,但相对于与矮草或高草相关的鸟类,更偏向于与中度高草相关的鸟类。我们还发现,GBCAs在重点景观区而非全州范围内具有更高的代表性。在此,我们展示了将公民科学数据与层次模型相结合,是估计生态基线以及对多个草原鸟类的现有保护网络进行大规模评估的有力工具。我们灵活的空间随机化方法有可能应用于其他保护区网络,并作为全球保护规划工作的补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4716/8601911/b33de0609268/ECE3-11-16006-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验