Suppr超能文献

用于多物种丰度估计的N混合模型的有效扩展。

An efficient extension of N-mixture models for multi-species abundance estimation.

作者信息

Gomez Juan Pablo, Robinson Scott K, Blackburn Jason K, Ponciano José Miguel

机构信息

Department of Biology, University of Florida, Gainesville, Florida.

Florida Museum of Natural History, Gainesville, Florida.

出版信息

Methods Ecol Evol. 2018 Feb;9(2):340-353. doi: 10.1111/2041-210X.12856. Epub 2017 Jul 24.

Abstract

In this study we propose an extension of the N-mixture family of models that targets an improvement of the statistical properties of rare species abundance estimators when sample sizes are low, yet typical for tropical studies. The proposed method harnesses information from other species in an ecological community to correct each species' estimator. We provide guidance to determine the sample size required to estimate accurately the abundance of rare tropical species when attempting to estimate the abundance of single species.We evaluate the proposed methods using an assumption of 50 m radius plots and perform simulations comprising a broad range of sample sizes, true abundances and detectability values and a complex data generating process. The extension of the N-mixture model is achieved by assuming that the detection probabilities are drawn at random from a beta distribution in a multi-species fashion. This hierarchical model avoids having to specify a single detection probability parameter per species in the targeted community. Parameter estimation is done via Maximum Likelihood.We compared our multi-species approach with previously proposed multi-species N-mixture models, which we show are biased when the true densities of species in the community are less than seven individuals per 100 hectares. The beta N-mixture model proposed here outperforms the traditional Multi-species N-mixture model by allowing the estimation of organisms at lower densities and controlling the bias in the estimation.We illustrate how our methodology can be used to suggest sample sizes required to estimate the abundance of organisms, when these are either rare, common or abundant. When the interest is full communities, we show how the multi-species approaches, and in particular our beta model and estimation methodology, can be used as a practical solution to estimate organism densities from rapid inventory datasets. The statistical inferences done with our model via Maximum Likelihood can also be used to group species in a community according to their detectabilities.

摘要

在本研究中,我们提出了N - 混合模型家族的一种扩展,其目标是在样本量较低但在热带研究中较为典型的情况下,改善珍稀物种丰度估计器的统计特性。所提出的方法利用生态群落中其他物种的信息来校正每个物种的估计器。当试图估计单一物种的丰度时,我们提供了指导,以确定准确估计珍稀热带物种丰度所需的样本量。我们使用半径为50米的样地假设来评估所提出的方法,并进行模拟,模拟包括广泛的样本量、真实丰度和可检测性值以及复杂的数据生成过程。N - 混合模型的扩展是通过假设检测概率以多物种方式从贝塔分布中随机抽取来实现的。这种层次模型避免了为目标群落中的每个物种指定单个检测概率参数。参数估计通过最大似然法进行。我们将我们的多物种方法与先前提出的多物种N - 混合模型进行了比较,结果表明,当群落中物种的真实密度低于每100公顷7个个体时,先前的模型存在偏差。这里提出的贝塔N - 混合模型通过允许在较低密度下估计生物体并控制估计偏差,优于传统的多物种N - 混合模型。我们说明了我们的方法如何用于建议估计生物体丰度所需的样本量,无论这些生物体是珍稀、常见还是丰富的。当关注的是整个群落时,我们展示了多物种方法,特别是我们的贝塔模型和估计方法,如何可以用作从快速清查数据集中估计生物体密度的实际解决方案。通过我们的模型通过最大似然法进行的统计推断,也可用于根据群落中物种的可检测性对它们进行分组。

相似文献

1
An efficient extension of N-mixture models for multi-species abundance estimation.
Methods Ecol Evol. 2018 Feb;9(2):340-353. doi: 10.1111/2041-210X.12856. Epub 2017 Jul 24.
2
A more reliable species richness estimator based on the Gamma-Poisson model.
PeerJ. 2023 Jan 6;11:e14540. doi: 10.7717/peerj.14540. eCollection 2023.
6
8
N-mixture models for estimating population size from spatially replicated counts.
Biometrics. 2004 Mar;60(1):108-15. doi: 10.1111/j.0006-341X.2004.00142.x.

引用本文的文献

1
Space-for-time substitutions exaggerate urban bird-habitat ecological relationships.
J Anim Ecol. 2024 Dec;93(12):1854-1867. doi: 10.1111/1365-2656.14194. Epub 2024 Nov 6.
2
N-mixture models for population estimation: Application in spotted lanternfly egg mass survey.
Curr Res Insect Sci. 2024 Mar 28;5:100078. doi: 10.1016/j.cris.2024.100078. eCollection 2024.
5
Zero-inflated count distributions for capture-mark-reencounter data.
Ecol Evol. 2022 Sep 9;12(9):e9274. doi: 10.1002/ece3.9274. eCollection 2022 Sep.
6
Sharing detection heterogeneity information among species in community models of occupancy and abundance can strengthen inference.
Ecol Evol. 2021 Dec 7;11(24):18125-18135. doi: 10.1002/ece3.8410. eCollection 2021 Dec.
7
Identifying mismatches between conservation area networks and vulnerable populations using spatial randomization.
Ecol Evol. 2021 Oct 25;11(22):16006-16020. doi: 10.1002/ece3.8270. eCollection 2021 Nov.
9
Coalescence modeling of intrainfection populations allows estimation of infection parameters in wild populations.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4273-4280. doi: 10.1073/pnas.1920790117. Epub 2020 Feb 13.
10
Evaluation of NEON Data to Model Spatio-Temporal Tick Dynamics in Florida.
Insects. 2019 Sep 27;10(10):321. doi: 10.3390/insects10100321.

本文引用的文献

1
The community ecology of pathogens: coinfection, coexistence and community composition.
Ecol Lett. 2015 Apr;18(4):401-15. doi: 10.1111/ele.12418. Epub 2015 Mar 2.
3
Detecting diversity: emerging methods to estimate species diversity.
Trends Ecol Evol. 2014 Feb;29(2):97-106. doi: 10.1016/j.tree.2013.10.012. Epub 2013 Dec 5.
5
Cryptic loss of montane avian richness and high community turnover over 100 years.
Ecology. 2013 Mar;94(3):598-609. doi: 10.1890/12-0928.1.
6
A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes.
Conserv Biol. 2013 Aug;27(4):785-95. doi: 10.1111/cobi.12046. Epub 2013 Apr 2.
7
Assessing parameter identifiability in phylogenetic models using data cloning.
Syst Biol. 2012 Dec 1;61(6):955-72. doi: 10.1093/sysbio/sys055. Epub 2012 May 30.
8
Making more out of sparse data: hierarchical modeling of species communities.
Ecology. 2011 Feb;92(2):289-95. doi: 10.1890/10-1251.1.
9
The unified neutral theory of biodiversity and biogeography at age ten.
Trends Ecol Evol. 2011 Jul;26(7):340-8. doi: 10.1016/j.tree.2011.03.024. Epub 2011 May 10.
10
Zero tolerance ecology: improving ecological inference by modelling the source of zero observations.
Ecol Lett. 2005 Nov;8(11):1235-46. doi: 10.1111/j.1461-0248.2005.00826.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验