Suppr超能文献

一种用于神经元容积图像中线提取的三维管状流模型。

A 3D Tubular Flux Model for Centerline Extraction in Neuron Volumetric Images.

出版信息

IEEE Trans Med Imaging. 2022 May;41(5):1069-1079. doi: 10.1109/TMI.2021.3130987. Epub 2022 May 2.

Abstract

Digital morphology reconstruction from neuron volumetric images is essential for computational neuroscience. The centerline of the axonal and dendritic tree provides an effective shape representation and serves as a basis for further neuron reconstruction. However, it is still a challenge to directly extract the accurate centerline from the complex neuron structure with poor image quality. In this paper, we propose a neuron centerline extraction method based on a 3D tubular flux model via a two-stage CNN framework. In the first stage, a 3D CNN is used to learn the latent neuron structure features, namely flux features, from neuron images. In the second stage, a light-weight U-Net takes the learned flux features as input to extract the centerline with a spatial weighted average strategy to constrain the multi-voxel width response. Specifically, the labels of flux features in the first stage are generated by the 3D tubular model which calculates the geometric representations of the flux between each voxel in the tubular region and the nearest point on the centerline ground truth. Compared with self-learned features by networks, flux features, as a kind of prior knowledge, explicitly take advantage of the contextual distance and direction distribution information around the centerline, which is beneficial for the precise centerline extraction. Experiments on two challenging datasets demonstrate that the proposed method outperforms other state-of-the-art methods by 18% and 35.1% in F1-measurement and average distance scores at the most, and the extracted centerline is helpful to improve the neuron reconstruction performance.

摘要

从神经元体积图像进行数字形态重建对于计算神经科学至关重要。轴突和树突的中心线提供了有效的形状表示,并作为进一步神经元重建的基础。然而,直接从质量较差的复杂神经元结构中提取准确的中心线仍然是一个挑战。在本文中,我们提出了一种基于 3D 管状流模型的神经元中心线提取方法,该方法通过两阶段 CNN 框架实现。在第一阶段,使用 3D CNN 从神经元图像中学习潜在的神经元结构特征,即流特征。在第二阶段,轻量级 U-Net 以学习到的流特征作为输入,通过空间加权平均策略提取中心线,以约束多体素宽度响应。具体来说,第一阶段的流特征标签是由 3D 管状模型生成的,该模型计算管状区域中每个体素与中心线真实值最近点之间的流的几何表示。与网络自行学习的特征相比,流特征作为一种先验知识,明确利用了中心线周围的上下文距离和方向分布信息,有助于准确提取中心线。在两个具有挑战性的数据集上的实验表明,所提出的方法在 F1 度量和平均距离得分方面比其他最先进的方法最多分别提高了 18%和 35.1%,并且提取的中心线有助于提高神经元重建性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验