Department of Statistics, University of Oxford, Oxford, UK.
Int J Biostat. 2020 Dec 2;17(2):331-348. doi: 10.1515/ijb-2020-0022.
We propose a nonparametric test of independence, termed optHSIC, between a covariate and a right-censored lifetime. Because the presence of censoring creates a challenge in applying the standard permutation-based testing approaches, we use optimal transport to transform the censored dataset into an uncensored one, while preserving the relevant dependencies. We then apply a permutation test using the kernel-based dependence measure as a statistic to the transformed dataset. The type 1 error is proven to be correct in the case where censoring is independent of the covariate. Experiments indicate that optHSIC has power against a much wider class of alternatives than Cox proportional hazards regression and that it has the correct type 1 control even in the challenging cases where censoring strongly depends on the covariate.
我们提出了一种非参数独立性检验方法,称为 optHSIC,用于检验协变量和右删失寿命之间的关系。由于删失的存在给应用标准的基于排列的检验方法带来了挑战,我们使用最优传输将删失数据集转换为无删失数据集,同时保留相关的依赖性。然后,我们使用基于核的依赖度量作为统计量对转换后的数据集应用排列检验。在删失与协变量独立的情况下,证明了该检验的第一类错误是正确的。实验表明,optHSIC 在对抗更广泛的替代类别的能力方面优于 Cox 比例风险回归,并且即使在删失强烈依赖协变量的情况下,它也能正确控制第一类错误。