da Cunha de Sá-Caputo Danúbia, Sonza Anelise, Coelho-Oliveira Ana Carolina, Pessanha-Freitas Juliana, Reis Aline Silva, Francisca-Santos Arlete, Dos Anjos Elzi Martins, Paineiras-Domingos Laisa Liane, de Rezende Bessa Guerra Thais, da Silva Franco Amanda, Xavier Vinicius Layter, Barbosa E Silva Claudia Jakelline, Moura-Fernandes Marcia Cristina, Mendonça Vanessa Amaral, Rodrigues Lacerda Ana Cristina, da Rocha Pinheiro Mulder Alessandra, Seixas Aderito, Sartorio Alessandro, Taiar Redha, Bernardo-Filho Mario
Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20511-010, Brazil.
Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20511-010, Brazil.
Biology (Basel). 2021 Nov 19;10(11):1209. doi: 10.3390/biology10111209.
Overweight and obesity are conditions associated with sedentary lifestyle and accumulation of abdominal fat, determining increased mortality, favoring chronic diseases, and increasing cardiovascular risk. Although the evaluation of body composition and fat distribution are highly relevant, the high cost of the gold standard techniques limits their wide utilization. Therefore, the aim of this work was to explore the relationships between simple anthropometric measures and BIA variables using multivariate linear regression models to estimate body composition and fat distribution in adults.
In this cross-sectional study, sixty-eight adult individuals (20 males and 48 females) were subjected to bioelectrical impedance analysis (BIA), anthropometric measurements (waist circumference (WC), neck circumference (NC), mid-arm circumference (MAC)), allowing the calculation of conicity index (C-index), fat mass/fat-free mass (FM/FFM) ratios, body mass index (BMI) and body shape index (ABSI). Statistical analyzes were performed with the R program. Nonparametric Statistical tests were applied to compare the characteristics of participants of the groups (normal weight, overweight and obese). For qualitative variables, the Fisher's exact test was applied, and for quantitative variables, the paired Wilcoxon signed-rank test. To evaluate the linear association between each pair of variables, the was calculated, and Multivariate linear regression models were adjusted using the stepwise variable selection method, with Akaike Information Criterion ( ≤ 0.05).
BIA variables with the highest correlations with anthropometric measures were total body water (TBW), body fat percentage (BFP), FM, FFM and FM/FFM. The multiple linear regression analysis showed, in general, that the same variables can be estimated through simple anthropometric measures.
The assessment of fat distribution in the body is desirable for the diagnosis and definition of obesity severity. However, the high cost of the instruments (dual energy X-ray absorptiometry, hydrostatic weighing, air displacement plethysmography, computed tomography, magnetic resonance) to assess it, favors the use of BMI in the clinical practice. Nevertheless, BMI does not represent a real fat distribution and body fat percentage. This highlights the relevance of the findings of the current study, since simple anthropometric variables can be used to estimate important BIA variables that are related to fat distribution and body composition.
超重和肥胖与久坐不动的生活方式以及腹部脂肪堆积有关,会导致死亡率增加、易患慢性疾病并增加心血管疾病风险。尽管身体成分和脂肪分布的评估非常重要,但金标准技术的高成本限制了它们的广泛应用。因此,本研究的目的是使用多元线性回归模型探讨简单人体测量指标与生物电阻抗分析(BIA)变量之间的关系,以估计成年人的身体成分和脂肪分布。
在这项横断面研究中,68名成年人(20名男性和48名女性)接受了生物电阻抗分析(BIA)、人体测量(腰围(WC)、颈围(NC)、上臂围(MAC)),从而计算锥度指数(C指数)、脂肪量/去脂体重(FM/FFM)比值、体重指数(BMI)和身体形状指数(ABSI)。使用R程序进行统计分析。应用非参数统计检验比较各组(正常体重、超重和肥胖)参与者的特征。对于定性变量,应用Fisher精确检验,对于定量变量,应用配对Wilcoxon符号秩检验。为了评估每对变量之间的线性关联,计算了相关系数,并使用逐步变量选择方法调整多元线性回归模型,以赤池信息准则(≤0.05)为准。
与人体测量指标相关性最高的BIA变量是总体水(TBW)、体脂百分比(BFP)、FM、FFM和FM/FFM。多元线性回归分析总体表明,相同的变量可以通过简单的人体测量指标进行估计。
评估身体脂肪分布对于肥胖严重程度的诊断和定义很有必要。然而,用于评估它的仪器(双能X线吸收法、水下称重法、空气置换体积描记法、计算机断层扫描、磁共振成像)成本高昂,这使得在临床实践中更倾向于使用BMI。然而,BMI并不能代表实际的脂肪分布和体脂百分比。这突出了本研究结果的相关性,因为简单的人体测量变量可用于估计与脂肪分布和身体成分相关的重要BIA变量。