Rabiee Navid, Rabiee Mohammad, Sojdeh Soheil, Fatahi Yousef, Dinarvand Rassoul, Safarkhani Moein, Ahmadi Sepideh, Daneshgar Hossein, Radmanesh Fatemeh, Maghsoudi Saeid, Bagherzadeh Mojtaba, Varma Rajender S, Mostafavi Ebrahim
Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.
School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
Biomolecules. 2021 Nov 17;11(11):1714. doi: 10.3390/biom11111714.
Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.
金属有机框架材料(MOFs)已被广泛用作多孔纳米材料,应用于从工业到生物医学等不同领域。首次引入了一种不可预测的一锅法,在更绿色的介质中借助高重力合成NH-MIL-53。然后,部署卟啉来修饰MOF的表面,以提高制备的纳米复合材料对遗传物质和原位细胞蛋白质结构的敏感性。遗传结构域与卟啉氮以及表面羟基之间形成氢键的可能性相同,这可被视为生物医学应用中化学物理和物理化学领域的一个里程碑。在此背景下,研究了掺入不同形式卟啉的作用、它们与最终表面形态的关系以及它们的药物/基因负载效率,以便为先前的研究提供一种可预测的模式。通过将抗Cas9蛋白的检测限提高到10 pM、单链DNA(ssDNA)的检测限提高到20 pM、单导向RNA(sgRNA)的检测限低于10 pM以及重组严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突抗原的检测限提高到约10 nM,优化了这一概念现象,以增加生物分子与底物之间的相互作用。此外,MTT分析表明,即使增加制备的纳米结构的剂量,在大多数情况下相对细胞活力仍可接受,超过85%。
Angew Chem Int Ed Engl. 2021-3-1
ACS Appl Mater Interfaces. 2021-3-10
J Mater Chem B. 2023-7-5
ACS Appl Mater Interfaces. 2021-10-27
Bioeng Transl Med. 2022-9-13
ACS Appl Bio Mater. 2022-3-21
ACS Appl Bio Mater. 2021-6-21
ACS Appl Bio Mater. 2021-6-21
Materials (Basel). 2021-6-30
ACS Appl Mater Interfaces. 2021-3-10
Nanomedicine (Lond). 2021-2
Biomed Phys Eng Express. 2020-9-8