文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

叶酸修饰的载姜黄素氧化铁纳米颗粒用于宫颈癌

Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer.

机构信息

Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.

Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.

出版信息

ACS Appl Bio Mater. 2022 Mar 21;5(3):1305-1318. doi: 10.1021/acsabm.1c01311. Epub 2022 Feb 24.


DOI:10.1021/acsabm.1c01311
PMID:35201760
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8941513/
Abstract

Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (FeO) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The functionalized nanoparticles (10-20 nm) were less likely to aggregate compared to non-functionalized nanoparticles. HPG@FeO and FA@HPG@FeO nanoparticles were compared in drug loading procedures with curcumin. HPG@FeO and FA@HPG@FeO nanoparticles' maximal drug-loading capacities were determined to be 82 and 88%, respectively. HeLa cells and mouse L929 fibroblasts treated with nanoparticles took up more FA@HPG@FeO nanoparticles than HPG@FeO nanoparticles. The FA@HPG@FeO nanoparticles produced in the current investigation have potential as anticancer drug delivery systems. For the purpose of diagnosis, incubation of HeLa cells with nanoparticles decreased MRI signal enhancement's percentage and the largest alteration was observed after incubation with FA@HPG@FeO nanoparticles.

摘要

癌症是一种长期困扰人类的致命疾病,近年来变得更加普遍。这种疾病的常见治疗方法一直面临许多问题和并发症,这导致了癌症诊断和治疗策略的发现。在过去的二十年中,磁性纳米粒子的使用对此产生了重大影响。本研究的目的之一是介绍这些纳米粒子的特殊性质以及它们的结构如何用于负载和输送药物到肿瘤。在本研究中,用超支化聚甘油(HPG)和叶酸(FA)对 6nm 大小的氧化铁(FeO)纳米粒子进行了涂层。与未功能化的纳米粒子相比,功能化的纳米粒子(10-20nm)不太容易聚集。在载药程序中,比较了 HPG@FeO 和 FA@HPG@FeO 纳米粒子与姜黄素的结合。HPG@FeO 和 FA@HPG@FeO 纳米粒子的最大载药能力分别为 82%和 88%。用纳米粒子处理的 HeLa 细胞和小鼠 L929 成纤维细胞吸收了更多的 FA@HPG@FeO 纳米粒子。本研究中制备的 FA@HPG@FeO 纳米粒子具有作为抗癌药物递送系统的潜力。为了诊断目的,用纳米粒子孵育 HeLa 细胞会降低 MRI 信号增强的百分比,并且在用 FA@HPG@FeO 纳米粒子孵育后观察到最大的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/8c6294ee40b5/mt1c01311_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/945593d7d9d5/mt1c01311_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/4c4cc899e13b/mt1c01311_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/87d096e5bd52/mt1c01311_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/6b02c30c20ad/mt1c01311_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/4b5b2029570e/mt1c01311_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/94b34b65b7f0/mt1c01311_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/169f352fdcce/mt1c01311_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/d5ef7405c084/mt1c01311_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/8c6294ee40b5/mt1c01311_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/945593d7d9d5/mt1c01311_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/4c4cc899e13b/mt1c01311_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/87d096e5bd52/mt1c01311_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/6b02c30c20ad/mt1c01311_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/4b5b2029570e/mt1c01311_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/94b34b65b7f0/mt1c01311_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/169f352fdcce/mt1c01311_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/d5ef7405c084/mt1c01311_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/8941513/8c6294ee40b5/mt1c01311_0010.jpg

相似文献

[1]
Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer.

ACS Appl Bio Mater. 2022-3-21

[2]
Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies.

ACS Biomater Sci Eng. 2024-10-14

[3]
Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics.

Molecules. 2020-9-4

[4]
Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor.

Int J Pharm. 2022-9-25

[5]
Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging.

J Colloid Interface Sci. 2019-8-13

[6]
Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy.

Drug Des Devel Ther. 2019-7-4

[7]
A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment.

Drug Des Devel Ther. 2021

[8]
Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

J Colloid Interface Sci. 2017-3-15

[9]
Synthesis of multifunctional FeO@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer.

Mater Sci Eng C Mater Biol Appl. 2018-9-15

[10]
Multi-functional core-shell FeO@Au nanoparticles for cancer diagnosis and therapy.

Colloids Surf B Biointerfaces. 2018-11-15

引用本文的文献

[1]
Advances in hybrid hydrogel design for biomedical applications: innovations in drug delivery and tissue engineering for gynecological cancers.

Cell Biol Toxicol. 2025-7-12

[2]
Design and characterization of SrO-CMC-Dcar nanocomposite with enhanced antimicrobial, anticancer, and antioxidant activities.

Naunyn Schmiedebergs Arch Pharmacol. 2025-7-9

[3]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[4]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[5]
Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics.

J Pharm Anal. 2024-12

[6]
A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity.

Molecules. 2024-7-25

[7]
The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management.

Cancers (Basel). 2024-7-18

[8]
Folate-Modified Curcumin-Loaded Nanoparticles for Overcoming Delivery Challenges in Cancer Treatment: A Narrative Review.

Curr Pharm Biotechnol. 2024-6-24

[9]
Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials.

Nanoscale Adv. 2024-4-2

[10]
Microneedle-mediated nanomedicine to enhance therapeutic and diagnostic efficacy.

Nano Converg. 2024-4-18

本文引用的文献

[1]
Folic Acid-Decorated -Cyclodextrin-Based Poly(ε-caprolactone)-dextran Star Polymer with Disulfide Bond-Linker as Theranostic Nanoparticle for Tumor-Targeted MRI and Chemotherapy.

Pharmaceutics. 2021-12-27

[2]
Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR.

ACS Appl Bio Mater. 2021-6-21

[3]
Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering.

ACS Appl Bio Mater. 2021-12-20

[4]
Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications.

J Med Chem. 2022-1-13

[5]
Metal-Organic Frameworks (MOFs) for Cancer Therapy.

Materials (Basel). 2021-11-28

[6]
Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications.

Biomolecules. 2021-11-17

[7]
Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies.

Biomed Pharmacother. 2021-12

[8]
Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects.

Phytother Res. 2022-1

[9]
Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery.

J Nanostructure Chem. 2022

[10]
Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment.

J Hazard Mater. 2022-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索