Suppr超能文献

深入了解线粒体遗传变异及其下游病理生理学:i(PSCs)能做什么?

Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do?

机构信息

Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.

Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

Genes (Basel). 2021 Oct 22;12(11):1668. doi: 10.3390/genes12111668.

Abstract

Mitochondria are specialized organelles involved in energy production that have retained their own genome throughout evolutionary history. The mitochondrial genome (mtDNA) is maternally inherited and requires coordinated regulation with nuclear genes to produce functional enzyme complexes that drive energy production. Each mitochondrion contains 5-10 copies of mtDNA and consequently, each cell has several hundreds to thousands of mtDNAs. Due to the presence of multiple copies of mtDNA in a mitochondrion, mtDNAs with different variants may co-exist, a condition called heteroplasmy. Heteroplasmic variants can be clonally expanded, even in post-mitotic cells, as replication of mtDNA is not tied to the cell-division cycle. Heteroplasmic variants can also segregate during germ cell formation, underlying the inheritance of some mitochondrial mutations. Moreover, the uneven segregation of heteroplasmic variants is thought to underlie the heterogeneity of mitochondrial variation across adult tissues and resultant differences in the clinical presentation of mitochondrial disease. Until recently, however, the mechanisms mediating the relation between mitochondrial genetic variation and disease remained a mystery, largely due to difficulties in modeling human mitochondrial genetic variation and diseases. The advent of induced pluripotent stem cells (iPSCs) and targeted gene editing of the nuclear, and more recently mitochondrial, genomes now provides the ability to dissect how genetic variation in mitochondrial genes alter cellular function across a variety of human tissue types. This review will examine the origins of mitochondrial heteroplasmic variation and propagation, and the tools used to model mitochondrial genetic diseases. Additionally, we discuss how iPSC technologies represent an opportunity to advance our understanding of human mitochondrial genetics in disease.

摘要

线粒体是参与能量产生的专门细胞器,在进化史上保留了自己的基因组。线粒体基因组(mtDNA)通过母系遗传,需要与核基因协调调控,以产生驱动能量产生的功能性酶复合物。每个线粒体含有 5-10 个 mtDNA 拷贝,因此,每个细胞有几百到几千个 mtDNA。由于一个线粒体中存在多个 mtDNA 拷贝,具有不同变体的 mtDNA 可能共存,这种情况称为异质性。异质性变体可以在有丝分裂后细胞中进行克隆扩增,因为 mtDNA 的复制与细胞分裂周期无关。异质性变体也可以在生殖细胞形成过程中分离,这是一些线粒体突变遗传的基础。此外,异质性变体的不均匀分离被认为是导致成年组织中线粒体变异的异质性以及线粒体疾病临床表现差异的基础。然而,直到最近,介导线粒体遗传变异与疾病之间关系的机制仍然是一个谜,这主要是由于建模人类线粒体遗传变异和疾病的困难。诱导多能干细胞(iPSCs)的出现和核基因组以及最近的线粒体基因组的靶向基因编辑为我们提供了一种能力,可以剖析线粒体基因中的遗传变异如何改变各种人类组织类型的细胞功能。这篇综述将探讨线粒体异质性变异和传播的起源,以及用于模拟线粒体遗传疾病的工具。此外,我们还讨论了 iPSC 技术如何为我们深入了解人类线粒体遗传学在疾病中的作用提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ce/8624338/dee4aeb468cf/genes-12-01668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验