Klang Eyal, Freeman Robert, Levin Matthew A, Soffer Shelly, Barash Yiftach, Lahat Adi
Sheba Medical Center, Department of Diagnostic Imaging, Tel Hashomer, Israel, and Sackler Medical School, Tel Aviv University, Tel Aviv 52621, Israel.
Sheba Talpiot Medical Leadership Program, Tel Hashomer, Israel, and Sackler Medical School, Tel Aviv University, Tel Aviv 52621, Israel.
Diagnostics (Basel). 2021 Nov 13;11(11):2102. doi: 10.3390/diagnostics11112102.
BACKGROUND & AIMS: We aimed at identifying specific emergency department (ED) risk factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model (ML) for predicting complicated AD.
We analyzed data retrieved from unselected consecutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The study time frame was from January 2011 through March 2021. Data were used to train and evaluate a gradient-boosting machine learning model to identify patients with complicated diverticulitis, defined as a need for invasive intervention or in-hospital mortality. The model was trained and evaluated on data from four hospitals and externally validated on held-out data from the fifth hospital.
The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68) and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium (AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78-0.91) for predicting complicated diverticulitis. For Youden's index, the model showed a sensitivity of 88% with a false positive rate of 1:3.6.
A ML model trained on clinical measures provides a proof of concept performance in predicting complications in patients presenting to the ED with AD. Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for further treatment under an ambulatory setting.
我们旨在确定发展为复杂性急性憩室炎(AD)的急诊科(ED)特定风险因素,并评估用于预测复杂性AD的机器学习模型(ML)。
我们分析了从纽约西奈山医疗系统五家医院连续纳入的未经选择的大肠AD患者的数据。研究时间范围为2011年1月至2021年3月。数据用于训练和评估梯度提升机器学习模型,以识别需要侵入性干预或院内死亡的复杂性憩室炎患者。该模型在四家医院的数据上进行训练和评估,并在第五家医院的预留数据上进行外部验证。
最终队列包括4997次AD就诊。其中,129次(2.9%)就诊为复杂性憩室炎。复杂性憩室炎患者更可能为男性、黑人,且通过救护车就诊。关于实验室值,复杂性憩室炎患者的绝对中性粒细胞水平较高(AUC 0.73)、白细胞水平较高(AUC 0.70)、血小板计数(AUC 0.68)和乳酸水平(AUC 0.61),而白蛋白水平较低(AUC 0.69)、氯水平较低(AUC 0.64)和钠水平较低(AUC 0.61)。在外部验证队列中,ML模型预测复杂性憩室炎的AUC为0.85(95%CI 0.78 - 0.91)。对于约登指数,该模型的敏感性为88%,假阳性率为1:3.6。
基于临床指标训练的ML模型在预测AD患者到急诊科就诊时的并发症方面提供了概念验证性能。临床上,这意味着ML模型可将低风险患者分类以便从急诊科出院,在门诊环境下进行进一步治疗。