Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel.
Intuit, HaHarash St.4, Building C 2nd floor, 4524075, Hod HaSharon, Israel.
Neuroradiology. 2020 Feb;62(2):153-160. doi: 10.1007/s00234-019-02293-y. Epub 2019 Oct 10.
In this study, we aimed to develop a novel prediction model to identify patients in need of a non-contrast head CT exam during emergency department (ED) triage.
We collected data of all adult ED visits in our institution for five consecutive years (1/2013-12/2017). Retrieved variables included the following: demographics, mode of arrival to the ED, comorbidities, home medications, structured and unstructured chief complaints, vital signs, pain scale score, emergency severity index, ED wing assignment, documentation of previous ED visits, hospitalizations and CTs, and current visit non-contrast head CT usage. A machine learning gradient boosting model was trained on data from the years 2013-2016 and tested on data from 2017. Area under the curve (AUC) was used as metrics. Single-variable AUCs were also determined. Youden's index evaluated optimal sensitivity and specificity of the models.
The final cohort included 595,561 ED visits. Non-contrast head CT usage rate was 11.8%. Each visit was coded into an input vector of 171 variables. Single-variable analysis showed that chief complaint had the best single predictive analysis (AUC = 0.87). The best model showed an AUC of 0.93 (95% CI 0.931-0.936) for predicting non-contrast head CT usage at triage level. The model had a sensitivity of 88.1% and specificity of 85.7% for non-contrast head CT utilization.
The developed model can identify patients that need to undergo head CT exam already in the ED triage level and by that allow faster diagnosis and treatment.
本研究旨在开发一种新的预测模型,以识别急诊科分诊中需要进行非对比头部 CT 检查的患者。
我们收集了我院连续五年(2013 年 1 月至 2017 年 12 月)所有成年急诊科就诊的数据。提取的变量包括以下内容:人口统计学特征、到急诊科的就诊方式、合并症、家庭用药、结构化和非结构化的主要症状、生命体征、疼痛评分、紧急严重程度指数、急诊科分区、之前急诊科就诊、住院和 CT 的记录以及本次就诊是否进行非对比头部 CT 检查。机器学习梯度提升模型在 2013-2016 年的数据上进行训练,并在 2017 年的数据上进行测试。曲线下面积(AUC)用作指标。也确定了单变量 AUC。模型的最佳灵敏度和特异性通过约登指数进行评估。
最终队列包括 595561 次急诊科就诊。非对比头部 CT 使用率为 11.8%。每次就诊都被编码为 171 个变量的输入向量。单变量分析表明,主要症状具有最佳的单一预测分析(AUC=0.87)。最佳模型在分诊水平上预测非对比头部 CT 使用的 AUC 为 0.93(95%CI 0.931-0.936)。该模型对非对比头部 CT 使用率的灵敏度为 88.1%,特异性为 85.7%。
该模型可在急诊科分诊时识别需要进行头部 CT 检查的患者,从而更快地进行诊断和治疗。