文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过应用于肠道微生物组数据的多视图堆叠泛化诊断炎症性肠病和结直肠癌

Diagnosis of Inflammatory Bowel Disease and Colorectal Cancer through Multi-View Stacked Generalization Applied on Gut Microbiome Data.

作者信息

Imangaliyev Sultan, Schlötterer Jörg, Meyer Folker, Seifert Christin

机构信息

Institute for Artificial Intelligence in Medicine, University of Duisburg-Essen, 45131 Essen, Germany.

Cancer Research Center Cologne Essen (CCCE), 45147 Essen, Germany.

出版信息

Diagnostics (Basel). 2022 Oct 17;12(10):2514. doi: 10.3390/diagnostics12102514.


DOI:10.3390/diagnostics12102514
PMID:36292203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9600435/
Abstract

Most of the microbiome studies suggest that using ensemble models such as Random Forest results in best predictive power. In this study, we empirically evaluate a more powerful ensemble learning algorithm, multi-view stacked generalization, on pediatric inflammatory bowel disease and adult colorectal cancer patients' cohorts. We aim to check whether stacking would lead to better results compared to using a single best machine learning algorithm. Stacking achieves the best test set Average Precision (AP) on inflammatory bowel disease dataset reaching AP = 0.69, outperforming both the best base classifier (AP = 0.61) and the baseline meta learner built on top of base classifiers (AP = 0.63). On colorectal cancer dataset, the stacked classifier also outperforms (AP = 0.81) both the best base classifier (AP = 0.79) and the baseline meta learner (AP = 0.75). Stacking achieves best predictive performance on test set outperforming the best classifiers on both patient cohorts. Application of the stacking solves the issue of choosing the most appropriate machine learning algorithm by automating the model selection procedure. Clinical application of such a model is not limited to diagnosis task only, but it also can be extended to biomarker selection thanks to feature selection procedure.

摘要

大多数微生物组研究表明,使用随机森林等集成模型可产生最佳预测能力。在本研究中,我们对儿科炎症性肠病和成年结直肠癌患者队列,实证评估了一种更强大的集成学习算法——多视图堆叠泛化。我们旨在检验与使用单一最佳机器学习算法相比,堆叠是否会带来更好的结果。堆叠在炎症性肠病数据集上实现了最佳测试集平均精度(AP),达到AP = 0.69,优于最佳基础分类器(AP = 0.61)和基于基础分类器构建的基线元学习器(AP = 0.63)。在结直肠癌数据集上,堆叠分类器也优于最佳基础分类器(AP = 0.79)和基线元学习器(AP = 0.75)(AP = 0.81)。堆叠在测试集上实现了最佳预测性能,优于两个患者队列中的最佳分类器。堆叠的应用通过自动化模型选择过程解决了选择最合适机器学习算法的问题。这种模型的临床应用不仅限于诊断任务,由于特征选择过程,它还可以扩展到生物标志物选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/35111e906545/diagnostics-12-02514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/3b44f24dd9a0/diagnostics-12-02514-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/d750179de672/diagnostics-12-02514-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/1b9c90cd73cf/diagnostics-12-02514-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/b395146f258f/diagnostics-12-02514-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/b2d3aaf1c1b5/diagnostics-12-02514-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/e120369cbc68/diagnostics-12-02514-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/36241c5bbc4e/diagnostics-12-02514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/625219eeafda/diagnostics-12-02514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/1d5ebf9ba754/diagnostics-12-02514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/0b5b067837e6/diagnostics-12-02514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/35111e906545/diagnostics-12-02514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/3b44f24dd9a0/diagnostics-12-02514-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/d750179de672/diagnostics-12-02514-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/1b9c90cd73cf/diagnostics-12-02514-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/b395146f258f/diagnostics-12-02514-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/b2d3aaf1c1b5/diagnostics-12-02514-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/e120369cbc68/diagnostics-12-02514-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/36241c5bbc4e/diagnostics-12-02514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/625219eeafda/diagnostics-12-02514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/1d5ebf9ba754/diagnostics-12-02514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/0b5b067837e6/diagnostics-12-02514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb6/9600435/35111e906545/diagnostics-12-02514-g005.jpg

相似文献

[1]
Diagnosis of Inflammatory Bowel Disease and Colorectal Cancer through Multi-View Stacked Generalization Applied on Gut Microbiome Data.

Diagnostics (Basel). 2022-10-17

[2]
Classifier Subset Selection for the Stacked Generalization Method Applied to Emotion Recognition in Speech.

Sensors (Basel). 2015-12-25

[3]
Evaluation of stacked ensemble model performance to predict clinical outcomes: A COVID-19 study.

Int J Med Inform. 2023-7

[4]
Stacking Ensemble Technique for Classifying Breast Cancer.

Healthc Inform Res. 2019-10

[5]
A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.

Math Biosci Eng. 2022-4-13

[6]
Exploring the dominant features and data-driven detection of polycystic ovary syndrome through modified stacking ensemble machine learning technique.

Heliyon. 2023-3-16

[7]
Discrimination of and Its Related Species Using IR Spectroscopy Combined with Feature Selection and Stacked Generalization.

Molecules. 2020-3-23

[8]
Predicting Alzheimer's Disease from Spoken and Written Language Using Fusion-Based Stacked Generalization.

J Biomed Inform. 2021-6

[9]
Prediction and explanation for ozone variability using cross-stacked ensemble learning model.

Sci Total Environ. 2024-7-20

[10]
Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.

Comput Methods Programs Biomed. 2021-1

本文引用的文献

[1]
Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study.

Diagnostics (Basel). 2022-8-24

[2]
Performance of a Deep Learning System for Automatic Diagnosis of Protruding Lesions in Colon Capsule Endoscopy.

Diagnostics (Basel). 2022-6-12

[3]
Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods.

PeerJ. 2022

[4]
Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets.

Diagnostics (Basel). 2022-4-4

[5]
Uncovering and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer Diagnosis.

Diagnostics (Basel). 2021-12-24

[6]
Human gut microbiome aging clocks based on taxonomic and functional signatures through multi-view learning.

Gut Microbes. 2022

[7]
Developing a Stacked Ensemble-Based Classification Scheme to Predict Second Primary Cancers in Head and Neck Cancer Survivors.

Int J Environ Res Public Health. 2021-11-27

[8]
Machine Learning Model for Outcome Prediction of Patients Suffering from Acute Diverticulitis Arriving at the Emergency Department-A Proof of Concept Study.

Diagnostics (Basel). 2021-11-13

[9]
Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions.

Front Microbiol. 2021-5-11

[10]
Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease.

Microorganisms. 2021-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索