Rani Anju, Kiran Asha, Sharma Kamal Dev, Prasad P V Vara, Jha Uday C, Siddique Kadambot H M, Nayyar Harsh
Department of Botany, Panjab University, Chandigarh 160014, India.
Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India.
Antioxidants (Basel). 2021 Oct 26;10(11):1693. doi: 10.3390/antiox10111693.
Chickpea is sensitive to cold stress, especially at reproductive stage, resulting in flower and pod abortion that significantly reduces seed yield. In the present study, we evaluated (a) whether cold acclimation imparts reproductive cold tolerance in chickpea; (b) how genotypes with contrasting sensitivity respond to cold acclimation; and (c) the involvement of cryoprotective solutes and antioxidants in anthers and ovules in cold acclimation. Four chickpea genotypes with contrasting cold sensitivity (cold-tolerant: ICC 17258, ICC 16349; cold-sensitive: ICC 15567, GPF 2) were grown in an outdoor environment for 40 days in November (average maximum/minimum temperature 24.9/15.9 °C) before being subjected to cold stress (13/7 °C), with or without cold acclimation in a controlled environment of walk-in-growth chambers. The 42-d cold acclimation involved 7 d exposure at each temperature beginning with 23/15 °C, 21/13 °C, 20/12 °C, 20/10 °C, 18/8 °C, 15/8 °C (12 h/12 h day/night), prior to exposing the plants to cold stress (13/7 °C, 12 h/12 h day/night; 700 μmol m s light intensity; 65-70% relative humidity). Cold acclimation remarkably reduced low temperature-induced leaf damage (as membrane integrity, leaf water status, stomatal conductance, photosynthetic pigments, and chlorophyll fluorescence) under cold stress in all four genotypes. It only reduced anther and ovule damage in cold-tolerant genotypes due to improved antioxidative ability, measured as enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbate and reduced glutathione), solutes (particularly sucrose and γ-aminobutyric acid) leading to improving reproductive function and yield traits, whereas cold-sensitive genotypes were not responsive. The study concluded that cold tolerance in chickpea appears to be related to the better ability of anthers and ovules to acclimate, involving various antioxidants and cryoprotective solutes. This information will be useful in directing efforts toward increasing cold tolerance in chickpea.
鹰嘴豆对冷胁迫敏感,尤其是在生殖阶段,会导致花和荚果脱落,从而显著降低种子产量。在本研究中,我们评估了:(a)冷驯化是否能赋予鹰嘴豆生殖期的抗冷性;(b)具有不同敏感性的基因型对冷驯化的反应;以及(c)低温保护溶质和抗氧化剂在花药和胚珠冷驯化过程中的作用。选用了四种对冷敏感性不同的鹰嘴豆基因型(耐冷型:ICC 17258、ICC 16349;冷敏感型:ICC 15567、GPF 2),于11月在室外环境中生长40天(平均最高/最低温度24.9/15.9℃),然后在步入式生长箱的可控环境中进行冷胁迫处理(13/7℃),处理过程中有或没有冷驯化。42天的冷驯化包括在每个温度下暴露7天,起始温度为23/15℃、21/13℃、20/12℃、20/10℃、18/8℃、15/8℃(12小时光照/12小时黑暗),之后将植株暴露于冷胁迫(13/7℃,12小时光照/12小时黑暗;光照强度700μmol m² s⁻¹;相对湿度65 - 70%)。冷驯化显著降低了所有四种基因型在冷胁迫下低温诱导的叶片损伤(如膜完整性、叶片水分状况、气孔导度、光合色素和叶绿素荧光)。由于抗氧化能力提高,冷驯化仅降低了耐冷基因型的花药和胚珠损伤,抗氧化能力通过酶促(超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶)和非酶促(抗坏血酸和还原型谷胱甘肽)溶质(特别是蔗糖和γ-氨基丁酸)来衡量,从而改善了生殖功能和产量性状,而冷敏感基因型则无反应。该研究得出结论,鹰嘴豆的耐冷性似乎与花药和胚珠更好的驯化能力有关,涉及多种抗氧化剂和低温保护溶质。这些信息将有助于指导提高鹰嘴豆耐冷性的研究工作。