Suppr超能文献

基于深度学习的容积分析能否预测 COVID-19 肺炎患者的氧需求增加?

Can Deep Learning-Based Volumetric Analysis Predict Oxygen Demand Increase in Patients with COVID-19 Pneumonia?

机构信息

Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital of Medicine, Tokyo 113-8510, Japan.

Trauma and Acute Critical Care Medical Center, Tokyo Medical and Dental University Hospital of Medicine, Tokyo 113-8510, Japan.

出版信息

Medicina (Kaunas). 2021 Oct 22;57(11):1148. doi: 10.3390/medicina57111148.

Abstract

: This study aimed to investigate whether predictive indicators for the deterioration of respiratory status can be derived from the deep learning data analysis of initial chest computed tomography (CT) scans of patients with coronavirus disease 2019 (COVID-19). : Out of 117 CT scans of 75 patients with COVID-19 admitted to our hospital between April and June 2020, we retrospectively analyzed 79 CT scans that had a definite time of onset and were performed prior to any medication intervention. Patients were grouped according to the presence or absence of increased oxygen demand after CT scan. Quantitative volume data of lung opacity were measured automatically using a deep learning-based image analysis system. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of the opacity volume data were calculated to evaluate the accuracy of the system in predicting the deterioration of respiratory status. : All 79 CT scans were included (median age, 62 years (interquartile range, 46-77 years); 56 (70.9%) were male. The volume of opacity was significantly higher for the increased oxygen demand group than for the nonincreased oxygen demand group (585.3 vs. 132.8 mL, < 0.001). The sensitivity, specificity, and AUC were 76.5%, 68.2%, and 0.737, respectively, in the prediction of increased oxygen demand. Deep learning-based quantitative analysis of the affected lung volume in the initial CT scans of patients with COVID-19 can predict the deterioration of respiratory status to improve treatment and resource management.

摘要

本研究旨在探讨是否可以从 2019 冠状病毒病(COVID-19)患者初始胸部计算机断层扫描(CT)的深度学习数据分析中得出预测呼吸状态恶化的指标。

在 2020 年 4 月至 6 月期间我院收治的 117 例 COVID-19 患者的 117 次 CT 扫描中,我们回顾性分析了 79 次具有明确发病时间且在任何药物干预之前进行的 CT 扫描。根据 CT 扫描后是否需要增加氧气需求将患者分为两组。使用基于深度学习的图像分析系统自动测量肺不透明度的定量容积数据。计算不透明度容积数据的灵敏度、特异性和受试者工作特征曲线(ROC)下面积(AUC),以评估该系统预测呼吸状态恶化的准确性。

所有 79 次 CT 扫描均包括在内(中位数年龄为 62 岁(四分位距为 46-77 岁);56 例(70.9%)为男性。需要增加氧气需求组的不透明度体积明显高于不需要增加氧气需求组(585.3 比 132.8 mL,<0.001)。在预测需要增加氧气需求时,灵敏度、特异性和 AUC 分别为 76.5%、68.2%和 0.737。

基于深度学习的 COVID-19 患者初始 CT 扫描受累肺容积的定量分析可以预测呼吸状态的恶化,从而改善治疗和资源管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c63c/8619125/e52e24bb5ef1/medicina-57-01148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验