Suppr超能文献

基于深度学习的阿尔茨海默病诊断流程:一项对比研究及一种新型深度集成方法

Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method.

作者信息

Loddo Andrea, Buttau Sara, Di Ruberto Cecilia

机构信息

Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy.

Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy.

出版信息

Comput Biol Med. 2022 Feb;141:105032. doi: 10.1016/j.compbiomed.2021.105032. Epub 2021 Nov 21.

Abstract

BACKGROUND

Alzheimer's disease is a chronic neurodegenerative disease that destroys brain cells, causing irreversible degeneration of cognitive functions and dementia. Its causes are not yet fully understood, and there is no curative treatment. However, neuroimaging tools currently offer help in clinical diagnosis, and, recently, deep learning methods have rapidly become a key methodology applied to these tools. The reason is that they require little or no image preprocessing and can automatically infer an optimal representation of the data from raw images without requiring prior feature selection, resulting in a more objective and less biased process. However, training a reliable model is challenging due to the significant differences in brain image types.

METHODS

We aim to contribute to the research and study of Alzheimer's disease through computer-aided diagnosis (CAD) by comparing different deep learning models. In this work, there are three main objectives: i) to present a fully automated deep-ensemble approach for dementia-level classification from brain images, ii) to compare different deep learning architectures to obtain the most suitable one for the task, and (iii) evaluate the robustness of the proposed strategy in a deep learning framework to detect Alzheimer's disease and recognise different levels of dementia. The proposed approach is specifically designed to be potential support for clinical care based on patients' brain images.

RESULTS

Our strategy was developed and tested on three MRI and one fMRI public datasets with heterogeneous characteristics. By performing a comprehensive analysis of binary classification (Alzheimer's disease status or not) and multiclass classification (recognising different levels of dementia), the proposed approach can exceed state of the art in both tasks, reaching an accuracy of 98.51% in the binary case, and 98.67% in the multiclass case averaged over the four different data sets.

CONCLUSION

We strongly believe that integrating the proposed deep-ensemble approach will result in robust and reliable CAD systems, considering the numerous cross-dataset experiments performed. Being tested on MRIs and fMRIs, our strategy can be easily extended to other imaging techniques. In conclusion, we found that our deep-ensemble strategy could be efficiently applied for this task with a considerable potential benefit for patient management.

摘要

背景

阿尔茨海默病是一种慢性神经退行性疾病,会破坏脑细胞,导致认知功能不可逆转的衰退和痴呆。其病因尚未完全明确,且尚无治愈性治疗方法。然而,神经成像工具目前在临床诊断中提供了帮助,并且最近深度学习方法迅速成为应用于这些工具的关键方法。原因在于它们几乎不需要或无需图像预处理,能够从原始图像中自动推断出数据的最优表示,而无需事先进行特征选择,从而使过程更加客观且偏差更小。然而,由于脑图像类型存在显著差异,训练一个可靠的模型具有挑战性。

方法

我们旨在通过比较不同的深度学习模型,为阿尔茨海默病的研究和探讨提供计算机辅助诊断(CAD)。在这项工作中,有三个主要目标:i)提出一种用于从脑图像进行痴呆程度分类的全自动深度集成方法;ii)比较不同的深度学习架构,以获得最适合该任务的架构;iii)在深度学习框架中评估所提出策略检测阿尔茨海默病和识别不同痴呆程度的稳健性。所提出的方法专门设计用于基于患者脑图像为临床护理提供潜在支持。

结果

我们的策略在三个具有异质性特征的磁共振成像(MRI)和一个功能磁共振成像(fMRI)公共数据集上进行了开发和测试。通过对二分类(是否患有阿尔茨海默病)和多分类(识别不同痴呆程度)进行全面分析,所提出的方法在这两项任务中均能超越现有技术水平,在二分类情况下准确率达到98.51%,在多分类情况下,四个不同数据集的平均准确率达到98.67%。

结论

考虑到进行了大量跨数据集实验,我们坚信整合所提出的深度集成方法将产生强大且可靠的CAD系统。由于我们的策略在MRI和fMRI上进行了测试,因此可以轻松扩展到其他成像技术。总之,我们发现我们的深度集成策略可以有效地应用于这项任务,对患者管理具有相当大的潜在益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验