Suppr超能文献

基于堆叠卷积神经网络的多通道注意力网络用于阿尔茨海默病检测。

Stacked CNN-based multichannel attention networks for Alzheimer disease detection.

作者信息

Hassan Najmul, Miah Abu Saleh Musa, Suzuki Kota, Okuyama Yuichi, Shin Jungpil

机构信息

School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan.

出版信息

Sci Rep. 2025 Feb 17;15(1):5815. doi: 10.1038/s41598-025-85703-x.

Abstract

Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.

摘要

阿尔茨海默病(AD)是一种进行性神经脑部疾病,其特征表现为痴呆、记忆力减退、行为改变和推理能力受损等症状。最近,许多研究人员致力于利用基于深度学习(DL)的卷积神经网络(CNN)模型开发一种有效的AD识别系统,旨在部署自动医学图像诊断系统。由于缺乏有效的特征,现有系统在准确性和效率方面仍难以达到令人满意的性能。本研究提出了一种基于通道注意力网络的轻量级堆叠卷积神经网络(SCCAN)用于基于MRI的AD分类,以克服这些挑战。在这个过程中,我们依次集成了5个CNN模块,形成一个堆叠式CNN,旨在通过多级提取对特征产生分层理解,有效减少噪声并提高权重的有效性。然后将该特征输入到通道注意力模块中,根据通道维度选择实际特征,便于选择有影响力的特征。因此,该模型的参数减少了,适合在较小的数据集中进行训练。针对Kaggle MRI数据集中的类别不平衡问题,强调了样本在类别之间的均衡分布。在ADNI1 Complete 1Yr 1.5T、Kaggle和OASIS-1数据集上对所提出模型进行的广泛实验分别显示出99.58%、99.22%和99.70%的准确率。所提出模型的高性能超过了当前最先进的(SOTA)模型,并证明了其作为使用MRI图像进行AD分类的重大进展的卓越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验