Suppr超能文献

牙髓病学中人工智能的批判性分析:范围综述。

Critical Analysis of Artificial Intelligence in Endodontics: A Scoping Review.

机构信息

Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.

Operative Dentistry and Endodontics, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.

出版信息

J Endod. 2022 Feb;48(2):152-160. doi: 10.1016/j.joen.2021.11.007. Epub 2021 Nov 25.

Abstract

INTRODUCTION

Artificial intelligence (AI) comprises computational models that mimic the human brain to perform various diagnostic tasks in clinical practice. The aim of this scoping review was to systematically analyze the AI algorithms and models used in endodontics and identify the source quality and type of evidence.

METHODS

A literature search was conducted in October 2020 to identify the relevant literature in English language in the 4 major health sciences databases, ie, MEDLINE, Dentistry & Oral Science, CINAHL Plus, and Cochrane Library. Our review questions were the following: what are the different AI algorithms and models used in endodontics?, what are the datasets being used?, what type of performance metrics were reported?, and what diagnostic performance measures were used?. The quality of the included studies was evaluated by a modified Quality Assessment of Studies of Diagnostic Accuracy risk (QUADAS) tool.

RESULTS

Out of 300 studies, 12 articles met our inclusion criteria and were subjected to final analysis. Among the included studies, 6 studies focused on periapical pathology, and 3 studies investigated vertical root fractures. Most studies (n = 10) used neural networks, among which convolutional neural networks were commonly used. The datasets that were mostly studied were radiographs. Out of 12 studies, only 3 studies achieved a high score according to the modified QUADAS tool.

CONCLUSIONS

AI models had acceptable performance, ie, accuracy >90% in executing various diagnostic tasks. The scientific reporting of AI-related research is irregular. The endodontic community needs to implement recommended guidelines to improve the weaknesses in the current planning and reporting of AI-related research to improve its scientific vigor.

摘要

简介

人工智能(AI)包括计算模型,这些模型旨在模仿人类大脑,以在临床实践中执行各种诊断任务。本范围综述的目的是系统地分析在牙髓学中使用的 AI 算法和模型,并确定其来源质量和证据类型。

方法

2020 年 10 月进行了文献检索,以在 4 个主要的健康科学数据库(即 MEDLINE、牙科和口腔科学、CINAHL Plus 和 Cochrane 图书馆)中查找英文相关文献。我们的综述问题如下:牙髓学中使用了哪些不同的 AI 算法和模型?使用了哪些数据集?报告了哪些类型的性能指标?使用了哪些诊断性能衡量标准?通过修改后的诊断准确性研究质量评估工具(QUADAS)评估纳入研究的质量。

结果

在 300 项研究中,有 12 篇文章符合纳入标准,并进行了最终分析。在纳入的研究中,有 6 项研究专注于根尖周病,有 3 项研究调查了垂直根折。大多数研究(n=10)使用神经网络,其中卷积神经网络最为常用。研究中使用最多的数据集是射线照片。在 12 项研究中,只有 3 项研究根据修改后的 QUADAS 工具获得了高分。

结论

AI 模型在执行各种诊断任务时表现出可接受的性能,即准确率>90%。AI 相关研究的科学报告不规范。牙髓学界需要实施建议的指南,以改善当前 AI 相关研究规划和报告中的弱点,从而提高其科学性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验