Suppr超能文献

利用正中神经 SEP 数据通过 RAMUS 逆源分析技术重建皮质下和皮质体感活动。

Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data.

机构信息

Faculty of Information and Communication Sciences, Unit of Computing Sciences, Tampere University, P.O. Box 1001, Tampere 33014, Finland.

Faculty of Information and Communication Sciences, Unit of Computing Sciences, Tampere University, P.O. Box 1001, Tampere 33014, Finland.

出版信息

Neuroimage. 2021 Dec 15;245:118726. doi: 10.1016/j.neuroimage.2021.118726. Epub 2021 Nov 25.

Abstract

This study concerns reconstructing brain activity at various depths based on non-invasive EEG (electroencephalography) scalp measurements. We aimed at demonstrating the potential of the RAMUS (randomized multiresolution scanning) technique in localizing weakly distinguishable far-field sources in combination with coinciding cortical activity. As we have shown earlier theoretically and through simulations, RAMUS is a novel mathematical method that by employing the multigrid concept, allows marginalizing noise and depth bias effects and thus enables the recovery of both cortical and subcortical brain activity. To show this capability with experimental data, we examined the 14-30 ms post-stimulus somatosensory evoked potential (SEP) responses of human median nerve stimulation in three healthy adult subjects. We aim at reconstructing the different response components by evaluating a RAMUS-based estimate for the primary current density in the nervous tissue. We present source reconstructions obtained with RAMUS and compare them with the literature knowledge of the SEP components and the outcome of the unit-noise gain beamformer (UGNB) and standardized low-resolution brain electromagnetic tomography (sLORETA). We also analyzed the effect of the iterative alternating sequential technique, the optimization technique of RAMUS, compared to the classical minimum norm estimation (MNE) technique. Matching with our previous numerical studies, the current results suggest that RAMUS could have the potential to enhance the detection of simultaneous deep and cortical components and the distinction between the evoked sulcal and gyral activity.

摘要

本研究基于非侵入性 EEG(脑电图)头皮测量,旨在重建不同深度的大脑活动。我们旨在证明 RAMUS(随机多分辨率扫描)技术在结合皮质活动的情况下,定位弱可区分的远场源的潜力。正如我们之前在理论和模拟中所展示的,RAMUS 是一种新颖的数学方法,通过采用多网格概念,可以边缘化噪声和深度偏差效应,从而恢复皮质和皮质下的大脑活动。为了用实验数据证明这一能力,我们检查了 3 名健康成年受试者中正中神经刺激后的 14-30 毫秒体感诱发电位(SEP)反应。我们旨在通过评估神经组织中初级电流密度的基于 RAMUS 的估计值来重建不同的响应分量。我们展示了基于 RAMUS 的源重建,并将其与 SEP 分量的文献知识以及单位噪声增益波束形成器(UGNB)和标准化低分辨率脑电磁层析成像(sLORETA)的结果进行了比较。我们还分析了迭代交替顺序技术的效果,与经典的最小范数估计(MNE)技术相比,RAMUS 的优化技术。与我们之前的数值研究相匹配,当前的结果表明,RAMUS 有可能增强对同时深部和皮质成分的检测,并区分诱发电位的沟回活动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验